文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合物涂层对作为磁共振成像造影剂的磁铁矿纳米颗粒性能的影响:一项对比研究。

The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study.

作者信息

Khalkhali Maryam, Rostamizadeh Kobra, Sadighian Somayeh, Khoeini Farhad, Naghibi Mehran, Hamidi Mehrdad

机构信息

Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.

Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.

出版信息

Daru. 2015 Sep 17;23(1):45. doi: 10.1186/s40199-015-0124-7.


DOI:10.1186/s40199-015-0124-7
PMID:26381740
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4574187/
Abstract

BACKGROUND: Superparamagnetic iron oxide nanoparticles (SPIONs) are the most commonly used negative MRI contrast agent which affect the transverse (T2) relaxation time. The aim of the present study was to investigate the impact of various polymeric coatings on the performance of magnetite nanoparticles as MRI contrast agents. METHODS: Ferrofluids based on magnetite (Fe3O4) nanoparticles (SPIONs) were synthesized via chemical co-precipitation method and coated with different biocompatible polymer coatings including mPEG-PCL, chitosan and dextran. RESULTS: The bonding status of different polymers on the surface of the magnetite nanoparticles was confirmed by the Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The vibrating sample magnetometer (VSM) analysis confirmed the superparamagnetic behavior of all synthesized nanoparticles. The field-emission scanning electron microscopy (FE-SEM) indicated the formation of quasi-spherical nanostructures with the final average particle size of 12-55 nm depending on the type of polymer coating, and X-ray diffraction (XRD) determined inverse spinel structure of magnetite nanoparticles. The ferrofluids demonstrated sufficient colloidal stability in deionized water with the zeta potentials of -24.2, -16.9, +31.6 and -21 mV for the naked SPIONs, and for dextran, chitosan and mPEG-PCL coated SPIONs, respectively. Finally, the magnetic relaxivities of water based ferrofluids were measured on a 1.5 T clinical MRI instrument. The r2/r1 value was calculated to be 17.21, 19.42 and 20.71 for the dextran, chitosan and mPEG-PCL coated SPIONs, respectively. CONCLUSIONS: The findings demonstrated that the value of r2/r1 ratio of mPEG-PCL modified SPIONs is higher than that of some commercial contrast agents. Therefore, it can be considered as a promising candidate for T2 MRI contrast agent.

摘要

背景:超顺磁性氧化铁纳米颗粒(SPIONs)是最常用的影响横向(T2)弛豫时间的阴性MRI造影剂。本研究的目的是研究各种聚合物涂层对磁铁矿纳米颗粒作为MRI造影剂性能的影响。

方法:基于磁铁矿(Fe3O4)纳米颗粒(SPIONs)的铁磁流体通过化学共沉淀法合成,并用包括mPEG-PCL、壳聚糖和葡聚糖在内的不同生物相容性聚合物涂层进行包覆。

结果:通过傅里叶变换红外光谱(FT-IR)和热重分析(TGA)证实了磁铁矿纳米颗粒表面不同聚合物的键合状态。振动样品磁强计(VSM)分析证实了所有合成纳米颗粒的超顺磁性行为。场发射扫描电子显微镜(FE-SEM)表明形成了准球形纳米结构,最终平均粒径为12-55nm,具体取决于聚合物涂层的类型,X射线衍射(XRD)确定了磁铁矿纳米颗粒的反尖晶石结构。铁磁流体在去离子水中表现出足够的胶体稳定性,裸SPIONs以及葡聚糖、壳聚糖和mPEG-PCL包覆的SPIONs的ζ电位分别为-24.2、-16.9、+31.6和-21mV。最后,在1.5T临床MRI仪器上测量了水基铁磁流体的磁弛豫率。葡聚糖、壳聚糖和mPEG-PCL包覆的SPIONs的r2/r1值分别计算为17.21、19.42和20.71。

结论:研究结果表明,mPEG-PCL修饰的SPIONs的r2/r1比值高于一些商业造影剂。因此,它可被视为T2 MRI造影剂的有前途的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/224e859e89fc/40199_2015_124_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/bada88dcd68f/40199_2015_124_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/1f2e54a7f416/40199_2015_124_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/b86b22984515/40199_2015_124_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/cd0e2dee4ce9/40199_2015_124_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/7933ac85e2a0/40199_2015_124_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/06e66b225481/40199_2015_124_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/6763ffeba25d/40199_2015_124_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/224e859e89fc/40199_2015_124_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/bada88dcd68f/40199_2015_124_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/1f2e54a7f416/40199_2015_124_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/b86b22984515/40199_2015_124_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/cd0e2dee4ce9/40199_2015_124_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/7933ac85e2a0/40199_2015_124_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/06e66b225481/40199_2015_124_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/6763ffeba25d/40199_2015_124_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/4574187/224e859e89fc/40199_2015_124_Fig8_HTML.jpg

相似文献

[1]
The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study.

Daru. 2015-9-17

[2]
[Preparation and characterization of citric acid-modified superparamagnetic iron oxide nanoparticles].

Beijing Da Xue Xue Bao Yi Xue Ban. 2018-4-18

[3]
Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles.

Eur J Pharm Biopharm. 2013-11

[4]
Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent.

Mar Drugs. 2012-10-29

[5]
Ga-radiolabeled bombesin-conjugated to trimethyl chitosan-coated superparamagnetic nanoparticles for molecular imaging: preparation, characterization and biological evaluation.

Int J Nanomedicine. 2019-4-10

[6]
Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images.

Nanomedicine (Lond). 2019-5-3

[7]
Functionalization of Magnetic Nanoparticles by Folate as Potential MRI Contrast Agent for Breast Cancer Diagnostics.

Molecules. 2020-9-4

[8]
Preliminary Study of MR and Fluorescence Dual-mode Imaging: Combined Macrophage-Targeted and Superparamagnetic Polymeric Micelles.

Int J Med Sci. 2018-1-1

[9]
Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

Int J Nanomedicine. 2018-3-12

[10]
Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

J Mater Sci Mater Med. 2017-3

引用本文的文献

[1]
Influence of SPION Surface Coating on Magnetic Properties and Theranostic Profile.

Molecules. 2024-4-17

[2]
Removal of bromophenol blue from polluted water using a novel azo-functionalized magnetic nano-adsorbent.

RSC Adv. 2024-1-3

[3]
Injectable Thermoresponsive Microparticle/Hydrogel System with Superparamagnetic Nanoparticles for Drug Release and Magnetic Hyperthermia Applications.

Gels. 2023-12-15

[4]
High Biocompatibility, MRI Enhancement, and Dual Chemo- and Thermal-Therapy of Curcumin-Encapsulated Alginate/FeO Nanoparticles.

Pharmaceutics. 2023-5-18

[5]
Formulation and Characterization of FeO@PEG Nanoparticles Loaded Sorafenib; Molecular Studies and Evaluation of Cytotoxicity in Liver Cancer Cell Lines.

Polymers (Basel). 2023-2-16

[6]
Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using as Model.

Toxics. 2022-11-30

[7]
Synthesis of Biocompatible Superparamagnetic Iron Oxide Nanoparticles (SPION) under Different Microfluidic Regimes.

ACS Appl Mater Interfaces. 2022-10-26

[8]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

[9]
Boosting the anti-inflammatory effect of self-assembled hybrid lecithin-chitosan nanoparticles via hybridization with gold nanoparticles for the treatment of psoriasis: elemental mapping and modeling.

Drug Deliv. 2022-12

[10]
Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies.

Pharmaceutics. 2022-5-14

本文引用的文献

[1]
Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy.

Bioimpacts. 2015

[2]
Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents.

Int J Nanomedicine. 2015-3-6

[3]
pH-Triggered Magnetic-Chitosan Nanogels (MCNs) For Doxorubicin Delivery: Physically vs. Chemically Cross Linking Approach.

Adv Pharm Bull. 2015-3

[4]
Biodegradable m-PEG/PCL Core-Shell Micelles: Preparation and Characterization as a Sustained Release Formulation for Curcumin.

Adv Pharm Bull. 2014-12

[5]
One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains.

Mater Sci Eng C Mater Biol Appl. 2015-3

[6]
Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy.

Colloids Surf B Biointerfaces. 2015-2-1

[7]
Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery.

Colloids Surf B Biointerfaces. 2014-5-1

[8]
Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate.

Res Pharm Sci. 2013-1

[9]
Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking.

Theranostics. 2013-7-31

[10]
Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents.

Chem Soc Rev. 2011-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索