Schauble Kirstin, Zakhidov Dante, Yalon Eilam, Deshmukh Sanchit, Grady Ryan W, Cooley Kayla A, McClellan Connor J, Vaziri Sam, Passarello Donata, Mohney Suzanne E, Toney Michael F, Sood A K, Salleo Alberto, Pop Eric
Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
ACS Nano. 2020 Nov 24;14(11):14798-14808. doi: 10.1021/acsnano.0c03515. Epub 2020 Sep 23.
Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here, we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to 5.2 eV) and monolayer MoS grown by chemical vapor deposition. We evaporate thin metal films onto MoS and study the interfaces by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and electrical characterization. We uncover that (1) ultrathin oxidized Al dopes MoS type (>2 × 10 cm) without degrading its mobility, (2) Ag, Au, and Ni deposition causes varying levels of damage to MoS (e.g. broadening Raman E' peak from <3 to >6 cm), and (3) Ti, Sc, and Y react with MoS. Reactive metals must be avoided in contacts to monolayer MoS, but control studies reveal the reaction is mostly limited to the top layer of multilayer films. Finally, we find that (4) thin metals do not significantly strain MoS, as confirmed by X-ray diffraction. These are important findings for metal contacts to MoS and broadly applicable to many other 2D semiconductors.
金属接触是二维(2D)半导体器件电子性能的关键限制因素。在此,我们对七种金属(Y、Sc、Ag、Al、Ti、Au、Ni,功函数从3.1到5.2电子伏特)与通过化学气相沉积生长的单层MoS之间的接触界面进行了全面研究。我们将薄金属膜蒸发到MoS上,并通过拉曼光谱、X射线光电子能谱、X射线衍射、透射电子显微镜和电学表征来研究这些界面。我们发现:(1)超薄氧化Al对MoS进行掺杂(>2×10 cm)而不降低其迁移率;(2)Ag、Au和Ni的沉积对MoS造成不同程度的损伤(例如,拉曼E'峰半高宽从<3变为>6 cm);(3)Ti、Sc和Y与MoS发生反应。在与单层MoS的接触中必须避免使用活性金属,但对照研究表明该反应主要限于多层膜的顶层。最后,我们发现:(4)如X射线衍射所证实的,薄金属不会使MoS产生明显应变。这些是关于MoS金属接触的重要发现,并且广泛适用于许多其他二维半导体。