Suppr超能文献

计算机辅助结节检测和体积测量可减少低剂量筛查 CT 中放射科医生对肺结节解读的差异。

Computer-aided nodule detection and volumetry to reduce variability between radiologists in the interpretation of lung nodules at low-dose screening computed tomography.

机构信息

Department of Radiology, College of Medicine, Gyeongsang National University, Jinju, Korea.

出版信息

Invest Radiol. 2012 Aug;47(8):457-61. doi: 10.1097/RLI.0b013e318250a5aa.

Abstract

OBJECTIVE

The aim of this study was to evaluate whether a computer-aided diagnosis (CAD) system improves interobserver agreement in the interpretation of lung nodules at low-dose computed tomography (CT) screening for lung cancer.

MATERIALS AND METHODS

Baseline low-dose screening CT examinations from 134 participants enrolled in the National Lung Screening Trial were reviewed by 7 chest radiologists. All participants consented to the use of their deidentified images for research purposes. Screening results were classified as positive when noncalcified nodules larger than 4 mm in diameter were present. Follow-up evaluation was recommended according to the nodule diameter: 4 mm or smaller, more than 4 to 8 mm, and larger than 8 mm. When multiple nodules were present, recommendations were based on the largest nodule. Readers initially assessed the nodule presence visually and measured the average nodule diameter manually. Revision of their decisions after reviewing the CAD marks and size measurement was allowed. Interobserver agreement evaluated using multirater κ statistics was compared between initial assessment and that with CAD.

RESULTS

Multirater κ values for the positivity of the screening results and follow-up recommendations were improved from moderate (κ = 0.53-0.54) at initial assessment to good (κ = 0.66-0.67) after reviewing CAD results. The average percentage of agreement between reader pairs on the positivity of screening results and follow-up recommendations per case was also increased from 77% and 72% at initial assessment to 84% and 80% with CAD, respectively.

CONCLUSION

Computer-aided diagnosis may improve the reader agreement on the positivity of screening results and follow-up recommendations in the assessment of low-dose screening CT.

摘要

目的

本研究旨在评估计算机辅助诊断(CAD)系统是否能提高低剂量 CT 肺癌筛查中肺结节判读的观察者间一致性。

材料与方法

回顾性分析了参加全国肺癌筛查试验的 134 名参与者的基线低剂量筛查 CT 检查。所有参与者均同意将其匿名图像用于研究目的。当存在直径大于 4 毫米的非钙化结节时,将筛查结果分类为阳性。根据结节直径推荐随访评估:4 毫米或更小、4 至 8 毫米、大于 8 毫米。当存在多个结节时,推荐基于最大结节。读者最初通过视觉评估结节的存在并手动测量平均结节直径。允许在查看 CAD 标记和大小测量结果后对其决策进行修订。使用多评分 κ 统计比较初始评估和 CAD 后评估的观察者间一致性。

结果

在初始评估时,筛查结果阳性和随访建议的多评分 κ 值为中度(κ=0.53-0.54),在查看 CAD 结果后提高至良好(κ=0.66-0.67)。在初始评估时,读者对每个病例筛查结果和随访建议阳性的平均一致性百分比分别为 77%和 72%,而使用 CAD 后分别提高至 84%和 80%。

结论

在低剂量 CT 评估中,CAD 可能提高对筛查结果和随访建议阳性的读者间一致性。

相似文献

引用本文的文献

5
Reader Perceptions and Impact of AI on CT Assessment of Air Trapping.读者对人工智能在肺过度充气CT评估中的认知及影响
Radiol Artif Intell. 2021 Nov 10;4(2):e210160. doi: 10.1148/ryai.2021210160. eCollection 2022 Mar.

本文引用的文献

5
The National Lung Screening Trial: overview and study design.国家肺癌筛查试验:概述与研究设计。
Radiology. 2011 Jan;258(1):243-53. doi: 10.1148/radiol.10091808. Epub 2010 Nov 2.
8
Management of lung nodules detected by volume CT scanning.容积CT扫描检测出的肺结节的管理
N Engl J Med. 2009 Dec 3;361(23):2221-9. doi: 10.1056/NEJMoa0906085.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验