Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.
Elife. 2020 Sep 15;9:e59726. doi: 10.7554/eLife.59726.
Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and , a putative producer abundant in crop microbiomes. upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.
苯并嗪是天然的细菌抗生素,可以保护作物免受疾病侵害。然而,对于大多数作物来说,尚不清楚哪些生产者和特定的苯并嗪在生态上具有相关性,以及苯并嗪的生物降解是否可以抵消它们的作用。为了更好地了解它们的生态,我们开发并验证了一种定量宏基因组方法,用于挖掘苯并嗪生物合成和生物降解基因,将其应用于 >800 个土壤和植物相关的鸟枪法宏基因组。我们发现了新的生产者-作物的关联,并证明了苯并嗪生物合成在各种生境中普遍存在,并且优先富集在根际中,而生物降解细菌则很少。我们验证了玉米和 之间的关联, 是一种在作物微生物组中丰度较高的假定生产者。 在磷限制下上调苯并嗪生物合成,并在玉米幼苗根中大量定植。这项工作提供了自然环境中苯并嗪的全球图景,并强调了农业潜力的植物-微生物关联。我们的宏基因组方法可以扩展到其他代谢物和不同生态系统中的功能特征。