Suppr超能文献

强直性脊柱炎的心血管风险预测:从传统评分到机器学习评估

Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment.

作者信息

Navarini Luca, Caso Francesco, Costa Luisa, Currado Damiano, Stola Liliana, Perrotta Fabio, Delfino Lorenzo, Sperti Michela, Deriu Marco A, Ruscitti Piero, Pavlych Viktoriya, Corrado Addolorata, Di Benedetto Giacomo, Tasso Marco, Ciccozzi Massimo, Laudisio Alice, Lunardi Claudio, Cantatore Francesco Paolo, Lubrano Ennio, Giacomelli Roberto, Scarpa Raffaele, Afeltra Antonella

机构信息

Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.

Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine, University Federico II of Naples, Naples, Italy.

出版信息

Rheumatol Ther. 2020 Dec;7(4):867-882. doi: 10.1007/s40744-020-00233-4. Epub 2020 Sep 16.

Abstract

INTRODUCTION

The performance of seven cardiovascular (CV) risk algorithms is evaluated in a multicentric cohort of ankylosing spondylitis (AS) patients. Performance and calibration of traditional CV predictors have been compared with the novel paradigm of machine learning (ML).

METHODS

A retrospective analysis of prospectively collected data from an AS cohort has been performed. The primary outcome was the first CV event. The discriminatory ability of the algorithms was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), which is like the concordance-statistic (c-statistic). Three ML techniques were considered to calculate the CV risk: support vector machine (SVM), random forest (RF), and k-nearest neighbor (KNN).

RESULTS

Of 133 AS patients enrolled, 18 had a CV event. c-statistic scores of 0.71, 0.61, 0.66, 0.68, 0.66, 0.72, and 0.67 were found, respectively, for SCORE, CUORE, FRS, QRISK2, QRISK3, RRS, and ASSIGN. AUC values for the ML algorithms were: 0.70 for SVM, 0.73 for RF, and 0.64 for KNN. Feature analysis showed that C-reactive protein (CRP) has the highest importance, while SBP and hypertension treatment have lower importance.

CONCLUSIONS

All of the evaluated CV risk algorithms exhibit a poor discriminative ability, except for RRS and SCORE, which showed a fair performance. For the first time, we demonstrated that AS patients do not show the traditional ones used by CV scores and that the most important variable is CRP. The present study contributes to a deeper understanding of CV risk in AS, allowing the development of innovative CV risk patient-specific models.

摘要

引言

在一个强直性脊柱炎(AS)患者的多中心队列中评估了七种心血管(CV)风险算法的性能。已将传统CV预测指标的性能和校准与机器学习(ML)的新范式进行了比较。

方法

对来自AS队列的前瞻性收集的数据进行了回顾性分析。主要结局是首次CV事件。使用受试者操作特征(ROC)曲线下面积(AUC)评估算法的鉴别能力,其类似于一致性统计量(c统计量)。考虑了三种ML技术来计算CV风险:支持向量机(SVM)、随机森林(RF)和k近邻(KNN)。

结果

在纳入的133例AS患者中,18例发生了CV事件。SCORE、CUORE、FRS、QRISK2、QRISK3、RRS和ASSIGN的c统计量得分分别为0.71、0.61、0.66、0.68、0.66、0.72和0.67。ML算法的AUC值分别为:SVM为0.70,RF为0.73,KNN为0.64。特征分析表明,C反应蛋白(CRP)的重要性最高,而收缩压(SBP)和高血压治疗的重要性较低。

结论

除RRS和SCORE表现尚可外,所有评估的CV风险算法的鉴别能力均较差。我们首次证明,AS患者并未表现出CV评分所使用的传统特征,且最重要的变量是CRP。本研究有助于更深入地了解AS中的CV风险,从而开发针对患者的创新性CV风险模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c734/7695785/58a5387e2793/40744_2020_233_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验