Suppr超能文献

尿蛋白增加趋势是 CKD 患者 eGFR 快速下降的危险因素:基于大数据的机器学习预测模型。

Increasing tendency of urine protein is a risk factor for rapid eGFR decline in patients with CKD: A machine learning-based prediction model by using a big database.

机构信息

Department of Internal Medicine, Fujita Health University Bantane Hospital-Nagoya, Japan.

Division of Medical Information Systems, Fujita Health University School of Medicine-Toyoake, Japan.

出版信息

PLoS One. 2020 Sep 17;15(9):e0239262. doi: 10.1371/journal.pone.0239262. eCollection 2020.

Abstract

Artificial intelligence is increasingly being adopted in medical fields to predict various outcomes. In particular, chronic kidney disease (CKD) is problematic because it often progresses to end-stage kidney disease. However, the trajectories of kidney function depend on individual patients. In this study, we propose a machine learning-based model to predict the rapid decline in kidney function among CKD patients by using a big hospital database constructed from the information of 118,584 patients derived from the electronic medical records system. The database included the estimated glomerular filtration rate (eGFR) of each patient, recorded at least twice over a period of 90 days. The data of 19,894 patients (16.8%) were observed to satisfy the CKD criteria. We characterized the rapid decline of kidney function by a decline of 30% or more in the eGFR within a period of two years and classified the available patients into two groups-those exhibiting rapid eGFR decline and those exhibiting non-rapid eGFR decline. Following this, we constructed predictive models based on two machine learning algorithms. Longitudinal laboratory data including urine protein, blood pressure, and hemoglobin were used as covariates. We used longitudinal statistics with a baseline corresponding to 90-, 180-, and 360-day windows prior to the baseline point. The longitudinal statistics included the exponentially smoothed average (ESA), where the weight was defined to be 0.9*(t/b), where t denotes the number of days prior to the baseline point and b denotes the decay parameter. In this study, b was taken to be 7 (7-day ESA). We used logistic regression (LR) and random forest (RF) algorithms based on Python code with scikit-learn library (https://scikit-learn.org/) for model creation. The areas under the curve for LR and RF were 0.71 and 0.73, respectively. The 7-day ESA of urine protein ranked within the first two places in terms of importance according to both models. Further, other features related to urine protein were likely to rank higher than the rest. The LR and RF models revealed that the degree of urine protein, especially if it exhibited an increasing tendency, served as a prominent risk factor associated with rapid eGFR decline.

摘要

人工智能在医学领域的应用日益广泛,可用于预测各种结果。特别是慢性肾脏病(CKD)是一个棘手的问题,因为它通常会发展为终末期肾病。然而,肾功能的轨迹取决于个体患者。在这项研究中,我们提出了一种基于机器学习的模型,使用来自电子病历系统的 118584 名患者信息构建的大型医院数据库,来预测 CKD 患者肾功能的快速下降。该数据库包括每位患者的估算肾小球滤过率(eGFR),记录时间至少为 90 天。有 19894 名患者(16.8%)的数据符合 CKD 标准。我们将肾功能快速下降定义为 eGFR 在两年内下降 30%或更多,并将可用患者分为两组,即 eGFR 快速下降组和 eGFR 非快速下降组。在此基础上,我们基于两种机器学习算法构建了预测模型。包括尿蛋白、血压和血红蛋白在内的纵向实验室数据被用作协变量。我们使用纵向统计方法,以 90、180 和 360 天为基线窗口,在基线点之前进行统计。纵向统计数据包括指数平滑平均值(ESA),权重定义为 0.9*(t/b),其中 t 表示距基线点的天数,b 表示衰减参数。在这项研究中,b 被设定为 7(7 天 ESA)。我们使用基于 Python 代码和 scikit-learn 库(https://scikit-learn.org/)的逻辑回归(LR)和随机森林(RF)算法来创建模型。LR 和 RF 的曲线下面积分别为 0.71 和 0.73。根据这两个模型,尿蛋白的 7 天 ESA 重要性排名前两位。此外,与尿蛋白相关的其他特征可能比其他特征更重要。LR 和 RF 模型表明,尿蛋白的程度,特别是如果呈上升趋势,是与肾功能快速下降相关的显著危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2e5/7497987/a4affceb66bd/pone.0239262.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验