Internal Medicine, Fujita Health University Bantane Hospital, Nagoya, Japan
Nephrology, Fujita Health University, Toyoake, Japan.
BMJ Open. 2022 Jun 9;12(6):e058833. doi: 10.1136/bmjopen-2021-058833.
Trajectories of estimated glomerular filtration rate (eGFR) decline vary highly among patients with chronic kidney disease (CKD). It is clinically important to identify patients who have high risk for eGFR decline. We aimed to identify clusters of patients with extremely rapid eGFR decline and develop a prediction model using a machine learning approach.
Retrospective single-centre cohort study.
Tertiary referral university hospital in Toyoake city, Japan.
A total of 5657 patients with CKD with baseline eGFR of 30 mL/min/1.73 m and eGFR decline of ≥30% within 2 years.
Our main outcome was extremely rapid eGFR decline. To study-complicated eGFR behaviours, we first applied a variation of group-based trajectory model, which can find trajectory clusters according to the slope of eGFR decline. Our model identified high-level trajectory groups according to baseline eGFR values and simultaneous trajectory clusters. For each group, we developed prediction models that classified the steepest eGFR decline, defined as extremely rapid eGFR decline compared with others in the same group, where we used the random forest algorithm with clinical parameters.
Our clustering model first identified three high-level groups according to the baseline eGFR (G1, high GFR, 99.7±19.0; G2, intermediate GFR, 62.9±10.3 and G3, low GFR, 43.7±7.8); our model simultaneously found three eGFR trajectory clusters for each group, resulting in nine clusters with different slopes of eGFR decline. The areas under the curve for classifying the extremely rapid eGFR declines in the G1, G2 and G3 groups were 0.69 (95% CI, 0.63 to 0.76), 0.71 (95% CI 0.69 to 0.74) and 0.79 (95% CI 0.75 to 0.83), respectively. The random forest model identified haemoglobin, albumin and C reactive protein as important characteristics.
The random forest model could be useful in identifying patients with extremely rapid eGFR decline.
UMIN 000037476; This study was registered with the UMIN Clinical Trials Registry.
患有慢性肾脏病(CKD)的患者估算肾小球滤过率(eGFR)下降的轨迹差异很大。识别 eGFR 下降风险较高的患者具有重要的临床意义。我们的目的是确定 eGFR 快速下降的患者群,并使用机器学习方法建立预测模型。
回顾性单中心队列研究。
日本丰明市的三级转诊大学医院。
共纳入 5657 例基线 eGFR 为 30 mL/min/1.73 m,2 年内 eGFR 下降≥30%的 CKD 患者。
我们的主要结局是 eGFR 急剧下降。为了研究复杂的 eGFR 行为,我们首先应用了一种基于分组轨迹模型的变化,该模型可以根据 eGFR 下降的斜率来发现轨迹群。我们的模型根据基线 eGFR 值和同时的轨迹群确定了高水平的轨迹组。对于每个组,我们使用随机森林算法和临床参数开发了预测模型,用于分类与同一组中其他组相比 eGFR 下降最快的情况,即定义为 eGFR 急剧下降。
我们的聚类模型首先根据基线 eGFR(G1,高 GFR,99.7±19.0;G2,中 GFR,62.9±10.3;G3,低 GFR,43.7±7.8)确定了三个高水平组;我们的模型同时为每个组找到了三个 eGFR 轨迹群,导致了九个具有不同 eGFR 下降斜率的轨迹群。在 G1、G2 和 G3 组中,分类 eGFR 急剧下降的曲线下面积分别为 0.69(95%CI,0.63 至 0.76)、0.71(95%CI,0.69 至 0.74)和 0.79(95%CI,0.75 至 0.83)。随机森林模型确定血红蛋白、白蛋白和 C 反应蛋白是重要特征。
随机森林模型可用于识别 eGFR 急剧下降的患者。
UMIN 000037476;本研究在 UMIN 临床试验注册处注册。