Suppr超能文献

深度学习在自动肝脏分割中的应用,以辅助非人类灵长类动物传染病的研究。

Deep Learning for Automated Liver Segmentation to Aid in the Study of Infectious Diseases in Nonhuman Primates.

机构信息

Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, 20814, USA.

Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), Frederick, MD, 21702, USA.

出版信息

Acad Radiol. 2021 Nov;28 Suppl 1(Suppl 1):S37-S44. doi: 10.1016/j.acra.2020.08.023. Epub 2020 Sep 14.

Abstract

With the advent of deep learning, convolutional neural networks (CNNs) have evolved as an effective method for the automated segmentation of different tissues in medical image analysis. In certain infectious diseases, the liver is one of the more highly affected organs, where an accurate liver segmentation method may play a significant role to improve the diagnosis, quantification, and follow-up. Although several segmentation algorithms have been proposed for liver or liver-tumor segmentation in computed tomography (CT) of human subjects, none of them have been investigated for nonhuman primates (NHPs), where the livers have a wide range in size and morphology. In addition, the unique characteristics of different infections or the heterogeneous immune responses of different NHPs to the infections appear with a diverse radiodensity distribution in the CT imaging. In this study, we investigated three state-of-the-art algorithms; VNet, UNet, and feature pyramid network (FPN) for automated liver segmentation in whole-body CT images of NHPs. The efficacy of the CNNs were evaluated on 82 scans of 37 animals, including pre and post-exposure to different viruses such as Ebola, Marburg, and Lassa. Using a 10-fold cross-validation, the best performance for the segmented liver was provided by the FPN; an average 94.77% Dice score, and 3.6% relative absolute volume difference. Our study demonstrated the efficacy of multiple CNNs, wherein the FPN outperforms VNet and UNet for liver segmentation in infectious disease imaging research.

摘要

随着深度学习的出现,卷积神经网络 (CNN) 已发展成为医学图像分析中自动分割不同组织的有效方法。在某些传染病中,肝脏是受影响较大的器官之一,准确的肝脏分割方法可能在改善诊断、量化和随访方面发挥重要作用。尽管已经提出了几种用于人体 CT 中肝脏或肝肿瘤分割的分割算法,但尚未针对非人类灵长类动物 (NHP) 进行研究,NHP 的肝脏大小和形态差异很大。此外,不同感染的独特特征或不同 NHP 对感染的异质性免疫反应在 CT 成像中表现出不同的放射密度分布。在这项研究中,我们研究了三种最先进的算法;VNet、UNet 和特征金字塔网络 (FPN),用于自动分割 NHP 全身 CT 图像中的肝脏。使用 10 倍交叉验证评估 CNN 的疗效,FPN 为分割后的肝脏提供了最佳性能;平均 Dice 得分为 94.77%,相对绝对体积差异为 3.6%。我们的研究证明了多种 CNN 的有效性,其中 FPN 在传染病成像研究中对肝脏分割的性能优于 VNet 和 UNet。

相似文献

3
Atlas-based liver segmentation for nonhuman primate research.基于图谱的非人类灵长类动物肝脏分割。
Int J Comput Assist Radiol Surg. 2020 Oct;15(10):1631-1638. doi: 10.1007/s11548-020-02225-9. Epub 2020 Jul 9.

引用本文的文献

3
Artificial Intelligence and Infectious Disease Imaging.人工智能与传染病影像学
J Infect Dis. 2023 Oct 3;228(Suppl 4):S322-S336. doi: 10.1093/infdis/jiad158.

本文引用的文献

2
Atlas-based liver segmentation for nonhuman primate research.基于图谱的非人类灵长类动物肝脏分割。
Int J Comput Assist Radiol Surg. 2020 Oct;15(10):1631-1638. doi: 10.1007/s11548-020-02225-9. Epub 2020 Jul 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验