Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany.
Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
Sci Rep. 2018 Oct 19;8(1):15497. doi: 10.1038/s41598-018-33860-7.
Automatic liver tumor segmentation would have a big impact on liver therapy planning procedures and follow-up assessment, thanks to standardization and incorporation of full volumetric information. In this work, we develop a fully automatic method for liver tumor segmentation in CT images based on a 2D fully convolutional neural network with an object-based postprocessing step. We describe our experiments on the LiTS challenge training data set and evaluate segmentation and detection performance. Our proposed design cascading two models working on voxel- and object-level allowed for a significant reduction of false positive findings by 85% when compared with the raw neural network output. In comparison with the human performance, our approach achieves a similar segmentation quality for detected tumors (mean Dice 0.69 vs. 0.72), but is inferior in the detection performance (recall 63% vs. 92%). Finally, we describe how we participated in the LiTS challenge and achieved state-of-the-art performance.
自动肝肿瘤分割将对肝治疗计划程序和后续评估产生重大影响,这要归功于标准化和充分利用全容积信息。在这项工作中,我们基于具有基于对象的后处理步骤的 2D 全卷积神经网络开发了一种用于 CT 图像中肝肿瘤分割的全自动方法。我们在 LiTS 挑战赛训练数据集上描述了我们的实验,并评估了分割和检测性能。我们提出的设计级联两个模型在体素级和对象级上工作,与原始神经网络输出相比,假阳性发现的数量显著减少了 85%。与人类表现相比,我们的方法对检测到的肿瘤具有相似的分割质量(平均骰子系数为 0.69 比 0.72),但在检测性能方面较差(召回率为 63%比 92%)。最后,我们描述了我们如何参与 LiTS 挑战赛并取得了最先进的性能。