Suppr超能文献

无线程控记录和刺激自由活动的人类大脑深部活动。

Wireless Programmable Recording and Stimulation of Deep Brain Activity in Freely Moving Humans.

机构信息

Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA.

Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA.

出版信息

Neuron. 2020 Oct 28;108(2):322-334.e9. doi: 10.1016/j.neuron.2020.08.021. Epub 2020 Sep 17.

Abstract

Uncovering the neural mechanisms underlying human natural ambulatory behavior is a major challenge for neuroscience. Current commercially available implantable devices that allow for recording and stimulation of deep brain activity in humans can provide invaluable intrinsic brain signals but are not inherently designed for research and thus lack flexible control and integration with wearable sensors. We developed a mobile deep brain recording and stimulation (Mo-DBRS) platform that enables wireless and programmable intracranial electroencephalographic recording and electrical stimulation integrated and synchronized with virtual reality/augmented reality (VR/AR) and wearables capable of external measurements (e.g., motion capture, heart rate, skin conductance, respiration, eye tracking, and scalp EEG). When used in freely moving humans with implanted neural devices, this platform is adaptable to ecologically valid environments conducive to elucidating the neural mechanisms underlying naturalistic behaviors and to the development of viable therapies for neurologic and psychiatric disorders.

摘要

揭示人类自然活动行为的神经机制是神经科学的一大挑战。目前市场上可用于记录和刺激人类大脑深部活动的植入式设备可以提供非常有价值的内在大脑信号,但这些设备并非专门为研究而设计,因此缺乏灵活的控制和与可穿戴传感器的集成。我们开发了一种移动的深部脑记录和刺激(Mo-DBRS)平台,该平台能够实现无线和可编程的颅内脑电图记录和电刺激,与虚拟现实/增强现实(VR/AR)和可穿戴设备集成和同步,这些可穿戴设备能够进行外部测量(例如,运动捕捉、心率、皮肤电导、呼吸、眼动追踪和头皮 EEG)。当在植入神经设备的自由移动的人类中使用时,该平台能够适应有利于阐明自然行为背后的神经机制的生态有效环境,并为神经和精神障碍的可行治疗方法的发展提供支持。

相似文献

4
CLoSES: A platform for closed-loop intracranial stimulation in humans.CLoSES:一个用于人类闭环颅内刺激的平台。
Neuroimage. 2020 Dec;223:117314. doi: 10.1016/j.neuroimage.2020.117314. Epub 2020 Sep 1.
6
Wireless gigabit data telemetry for large-scale neural recording.用于大规模神经记录的无线千兆数据遥测技术。
IEEE J Biomed Health Inform. 2015 May;19(3):949-57. doi: 10.1109/JBHI.2015.2416202. Epub 2015 Mar 24.
8
myBrain: a novel EEG embedded system for epilepsy monitoring.myBrain:一种用于癫痫监测的新型脑电图嵌入式系统。
J Med Eng Technol. 2017 Oct;41(7):564-585. doi: 10.1080/03091902.2017.1382585. Epub 2017 Oct 10.
9
EEG Movement Artifact Suppression in Interactive Virtual Reality.交互式虚拟现实中的脑电图运动伪迹抑制
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4576-4579. doi: 10.1109/EMBC.2019.8856961.

引用本文的文献

3
Human neural dynamics of real-world and imagined navigation.现实世界与想象导航中的人类神经动力学
Nat Hum Behav. 2025 Apr;9(4):781-793. doi: 10.1038/s41562-025-02119-3. Epub 2025 Mar 10.

本文引用的文献

9
Promises and limitations of human intracranial electroencephalography.人类颅内脑电图的前景与局限。
Nat Neurosci. 2018 Apr;21(4):474-483. doi: 10.1038/s41593-018-0108-2. Epub 2018 Mar 5.
10
Multi-day rhythms modulate seizure risk in epilepsy.多日节律调节癫痫的发作风险。
Nat Commun. 2018 Jan 8;9(1):88. doi: 10.1038/s41467-017-02577-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验