Suppr超能文献

基于模式的形态测量学:一种绘制人类神经解剖结构的多尺度方法。

Mode-based morphometry: A multiscale approach to mapping human neuroanatomy.

作者信息

Cao Trang, Pang James C, Segal Ashlea, Chen Yu-Chi, Aquino Kevin M, Breakspear Michael, Fornito Alex

机构信息

The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, 762-772 Blackburn Rd, Clayton VIC 3168, Australia.

School of Physics, University of Sydney, Physics Rd, Camperdown NSW 2006, Australia.

出版信息

bioRxiv. 2023 Feb 27:2023.02.26.529328. doi: 10.1101/2023.02.26.529328.

Abstract

Voxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings. Moreover, they are restricted to a single spatial resolution scale, precluding the opportunity to distinguish anatomical variations that are expressed across multiple scales. Drawing on concepts from classical physics, here we develop an approach, called mode-based morphometry (MBM), that can describe any empirical map of anatomical variations in terms of the fundamental, resonant modes--eigenmodes--of brain anatomy, each tied to a specific spatial scale. Hence, MBM naturally yields a multiscale characterization of the empirical map, affording new opportunities for investigating the spatial frequency content of neuroanatomical variability. Using simulated and empirical data, we show that the validity and reliability of MBM are either comparable or superior to classical vertex-based SBM for capturing differences in cortical thickness maps between two experimental groups. Our approach thus offers a robust, accurate, and informative method for characterizing empirical maps of neuroanatomical variability that can be directly linked to a generative physical process.

摘要

基于体素的形态测量学(VBM)和基于表面的形态测量学(SBM)是两种广泛用于研究脑解剖结构的神经成像技术。这些技术依赖于在各个点(体素或顶点)、点簇或先验感兴趣区域进行统计推断。它们是描述脑解剖结构的有力工具,但对于形成特定一组研究结果的生成过程几乎没有提供深入见解。此外,它们限于单一空间分辨率尺度,排除了区分在多个尺度上表现出的解剖变异的机会。借鉴经典物理学的概念,我们在此开发了一种称为基于模式的形态测量学(MBM)的方法,该方法可以根据脑解剖结构的基本共振模式——本征模式——来描述解剖变异的任何经验图谱,每个本征模式都与特定的空间尺度相关。因此,MBM自然地产生了经验图谱的多尺度特征描述,为研究神经解剖变异的空间频率内容提供了新机会。使用模拟和经验数据,我们表明,对于捕捉两个实验组之间皮质厚度图谱的差异,MBM的有效性和可靠性与基于顶点的经典SBM相当或更优。因此,我们的方法为表征可直接与生成物理过程相关联的神经解剖变异经验图谱提供了一种稳健、准确且信息丰富的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ff/10002616/81705f83bac2/nihpp-2023.02.26.529328v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验