Jousseaume Thibaut, Colin Jean-François, Chandesris Marion, Lyonnard Sandrine, Tardif Samuel
Univ. Grenoble Alpes, CEA, IRIG, F-38000, Grenoble, France.
Univ. Grenoble Alpes, CEA, LITEN, F-38000, Grenoble, France.
ACS Energy Lett. 2023 Jul 12;8(8):3323-3329. doi: 10.1021/acsenergylett.3c00815. eCollection 2023 Aug 11.
With the advent of high-brilliance synchrotron sources, the issue of beam damage on the samples deserves proper attention. It is especially true for studies in batteries, since the intense photon fluxes are commonly used to probe ever finer effects. Here we report on the causes and consequences of synchrotron X-ray beam damage in batteries, based on the case study of X-ray diffraction. We show that beam damage is caused by the mingled actions of dose and dose rate. The aftereffects can lie in a broad range, from mild modifications of the crystalline structure to artificial phase transitions, and can thus impede or bias the understanding of the mechanisms at play. We estimate the doses at which the different effects appear in two materials, suggesting that it could be expanded to other materials with the same technology. We also provide recommendations for the design of synchrotron experiments.
随着高亮度同步辐射源的出现,样品上的束流损伤问题值得适当关注。对于电池研究来说尤其如此,因为高强度光子通量通常用于探测更细微的效应。在此,我们基于X射线衍射的案例研究,报告电池中同步辐射X射线束流损伤的原因及后果。我们表明,束流损伤是由剂量和剂量率的共同作用引起的。其后续影响范围广泛,从晶体结构的轻微改变到人为的相变,因此可能会阻碍或误导对所涉及机制的理解。我们估计了两种材料中出现不同效应时的剂量,并表明通过相同技术可将其扩展到其他材料。我们还为同步辐射实验的设计提供了建议。