Suppr超能文献

基于 MRI 的个体恒河猴大脑分区和形态计量学:猕猴哈佛-牛津图谱(mHOA),是一个参照标准化本体的转化系统。

MRI-based Parcellation and Morphometry of the Individual Rhesus Monkey Brain: the macaque Harvard-Oxford Atlas (mHOA), a translational system referencing a standardized ontology.

机构信息

Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.

Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Brain Imaging Behav. 2021 Jun;15(3):1589-1621. doi: 10.1007/s11682-020-00357-9.

Abstract

Investigations of the rhesus monkey (Macaca mulatta) brain have shed light on the function and organization of the primate brain at a scale and resolution not yet possible in humans. A cornerstone of the linkage between non-human primate and human studies of the brain is magnetic resonance imaging, which allows for an association to be made between the detailed structural and physiological analysis of the non-human primate and that of the human brain. To further this end, we present a novel parcellation method and system for the rhesus monkey brain, referred to as the macaque Harvard-Oxford Atlas (mHOA), which is based on the human Harvard-Oxford Atlas (HOA) and grounded in an ontological and taxonomic framework. Consistent anatomical features were used to delimit and parcellate brain regions in the macaque, which were then categorized according to functional systems. This system of parcellation will be expanded with advances in technology and, like the HOA, will provide a framework upon which the results from other experimental studies (e.g., functional magnetic resonance imaging (fMRI), physiology, connectivity, graph theory) can be interpreted.

摘要

对恒河猴(Macaca mulatta)大脑的研究揭示了灵长类动物大脑的功能和组织,其规模和分辨率在人类中尚无法实现。非人类灵长类动物和人类大脑研究之间的联系的基石是磁共振成像,它允许在非人类灵长类动物的详细结构和生理分析与人类大脑之间建立关联。为此,我们提出了一种新的恒河猴大脑分割方法和系统,称为猕猴哈佛-牛津图谱(mHOA),它基于人类哈佛-牛津图谱(HOA),并基于本体论和分类学框架。我们使用一致的解剖特征来划定和分割猕猴的大脑区域,然后根据功能系统对其进行分类。这个分割系统将随着技术的进步而扩展,并且像 HOA 一样,为其他实验研究(例如功能磁共振成像(fMRI)、生理学、连通性、图论)的结果提供一个解释框架。

相似文献

3
Macaque Brainnetome Atlas: A multifaceted brain map with parcellation, connection, and histology.
Sci Bull (Beijing). 2024 Jul 30;69(14):2241-2259. doi: 10.1016/j.scib.2024.03.031. Epub 2024 Mar 15.
4
The Subcortical Atlas of the Rhesus Macaque (SARM) for neuroimaging.
Neuroimage. 2021 Jul 15;235:117996. doi: 10.1016/j.neuroimage.2021.117996. Epub 2021 Mar 29.
5
Parcellation of Macaque Cortex with Anatomical Connectivity Profiles.
Brain Topogr. 2018 Mar;31(2):161-173. doi: 10.1007/s10548-017-0576-9. Epub 2017 Jul 13.
6
CIVET-Macaque: An automated pipeline for MRI-based cortical surface generation and cortical thickness in macaques.
Neuroimage. 2021 Feb 15;227:117622. doi: 10.1016/j.neuroimage.2020.117622. Epub 2020 Dec 8.
7
A diffusion tensor MRI atlas of the postmortem rhesus macaque brain.
Neuroimage. 2015 Aug 15;117:408-16. doi: 10.1016/j.neuroimage.2015.05.072. Epub 2015 May 31.
9
Connectome-scale functional intrinsic connectivity networks in macaques.
Neuroscience. 2017 Nov 19;364:1-14. doi: 10.1016/j.neuroscience.2017.08.022. Epub 2017 Aug 24.
10
A comprehensive macaque fMRI pipeline and hierarchical atlas.
Neuroimage. 2021 Jul 15;235:117997. doi: 10.1016/j.neuroimage.2021.117997. Epub 2021 Mar 28.

引用本文的文献

2
Mapping sagittal-plane reference brain atlas of the cynomolgus macaque (Macaca fascicularis) based on consecutive cytoarchitectonic images.
Brain Struct Funct. 2024 Nov;229(8):2045-2057. doi: 10.1007/s00429-024-02851-y. Epub 2024 Aug 27.

本文引用的文献

1
How Human Is Human Connectional Neuroanatomy?
Front Neuroanat. 2020 Apr 15;14:18. doi: 10.3389/fnana.2020.00018. eCollection 2020.
2
Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.
3
Structural connectivity and functional properties of the macaque superior parietal lobule.
Brain Struct Funct. 2020 May;225(4):1349-1367. doi: 10.1007/s00429-019-01976-9. Epub 2019 Nov 11.
4
Holographic Reconstruction of Axonal Pathways in the Human Brain.
Neuron. 2019 Dec 18;104(6):1056-1064.e3. doi: 10.1016/j.neuron.2019.09.030. Epub 2019 Nov 7.
5
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex.
Front Neuroanat. 2018 Nov 19;12:93. doi: 10.3389/fnana.2018.00093. eCollection 2018.
6
Limits to anatomical accuracy of diffusion tractography using modern approaches.
Neuroimage. 2019 Jan 15;185:1-11. doi: 10.1016/j.neuroimage.2018.10.029. Epub 2018 Oct 11.
7
Cortical Gradients and Laminar Projections in Mammals.
Trends Neurosci. 2018 Nov;41(11):775-788. doi: 10.1016/j.tins.2018.06.003. Epub 2018 Jul 3.
8
Cortical Connections Position Primate Area 25 as a Keystone for Interoception, Emotion, and Memory.
J Neurosci. 2018 Feb 14;38(7):1677-1698. doi: 10.1523/JNEUROSCI.2363-17.2017. Epub 2018 Jan 22.
9
The challenge of mapping the human connectome based on diffusion tractography.
Nat Commun. 2017 Nov 7;8(1):1349. doi: 10.1038/s41467-017-01285-x.
10
Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus.
Brain Behav Evol. 2017;90(3):255-263. doi: 10.1159/000481085. Epub 2017 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验