Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA.
Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA.
Dev Neurosci. 2023;45(4):161-180. doi: 10.1159/000530358. Epub 2023 Mar 28.
A complete structural definition of the human nervous system must include delineation of its wiring diagram (e.g., Swanson LW. Brain architecture: understanding the basic plan, 2012). The complete formulation of the human brain circuit diagram (BCD [Front Neuroanat. 2020;14:18]) has been hampered by an inability to determine connections in their entirety (i.e., not only pathway stems but also origins and terminations). From a structural point of view, a neuroanatomic formulation of the BCD should include the origins and terminations of each fiber tract as well as the topographic course of the fiber tract in three dimensions. Classic neuroanatomical studies have provided trajectory information for pathway stems and their speculative origins and terminations [Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux, 1901; Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux: Méthodes générales d'étude-embryologie-histogénèse et histologie. Anatomie du cerveau, 1895; Ludwig E and Klingler J. Atlas cerebri humani, 1956; Makris N. Delineation of human association fiber pathways using histologic and magnetic resonance methodologies; 1999; Neuroimage. 1999 Jan;9(1):18-45]. We have summarized these studies previously [Neuroimage. 1999 Jan;9(1):18-45] and present them here in a macroscale-level human cerebral structural connectivity matrix. A matrix in the present context is an organizational construct that embodies anatomical knowledge about cortical areas and their connections. This is represented in relation to parcellation units according to the Harvard-Oxford Atlas neuroanatomical framework established by the Center for Morphometric Analysis at Massachusetts General Hospital in the early 2000s, which is based on the MRI volumetrics paradigm of Dr. Verne Caviness and colleagues [Brain Dev. 1999 Jul;21(5):289-95]. This is a classic connectional matrix based mainly on data predating the advent of DTI tractography, which we refer to as the "pre-DTI era" human structural connectivity matrix. In addition, we present representative examples that incorporate validated structural connectivity information from nonhuman primates and more recent information on human structural connectivity emerging from DTI tractography studies. We refer to this as the "DTI era" human structural connectivity matrix. This newer matrix represents a work in progress and is necessarily incomplete due to the lack of validated human connectivity findings on origins and terminations as well as pathway stems. Importantly, we use a neuroanatomical typology to characterize different types of connections in the human brain, which is critical for organizing the matrices and the prospective database. Although substantial in detail, the present matrices may be assumed to be only partially complete because the sources of data relating to human fiber system organization are limited largely to inferences from gross dissections of anatomic specimens or extrapolations of pathway tracing information from nonhuman primate experiments [Front Neuroanat. 2020;14:18, Front Neuroanat. 2022;16:1035420, and Brain Imaging Behav. 2021;15(3):1589-1621]. These matrices, which embody a systematic description of cerebral connectivity, can be used in cognitive and clinical studies in neuroscience and, importantly, to guide research efforts for further elucidating, validating, and completing the human BCD [Front Neuroanat. 2020;14:18].
人类神经系统的完整结构定义必须包括其接线图的描绘(例如,Swanson LW. 大脑架构:理解基本计划,2012 年)。由于无法完全确定连接,因此完整制定人类脑电路图(BCD [Front Neuroanat. 2020;14:18])受到了阻碍(即不仅包括途径主干,还包括起源和终点)。从结构的角度来看,BCD 的神经解剖学表述应该包括每条纤维束的起源和终点以及纤维束在三维空间中的拓扑路径。经典神经解剖学研究为途径主干及其推测的起源和终点提供了轨迹信息 [Dejerine J 和 Dejerine-Klumpke A. 中枢神经系统解剖学,1901 年;Dejerine J 和 Dejerine-Klumpke A. 中枢神经系统解剖学:一般研究方法-胚胎学-组织发生学和组织学。大脑解剖学,1895 年;Ludwig E 和 Klingler J. 人类大脑的图谱,1956 年;Makris N. 使用组织学和磁共振方法描绘人类联想纤维通路;1999 年;神经影像学。1999 年 1 月;9(1):18-45]。我们之前已经总结了这些研究 [神经影像学。1999 年 1 月;9(1):18-45],并在此处以宏观水平的人类大脑结构连接矩阵形式呈现。在当前的上下文中,矩阵是一种组织构建,它体现了关于皮质区域及其连接的解剖学知识。这是根据哈佛大学-牛津大学神经解剖学框架的分区单位来表示的,该框架由马萨诸塞州总医院的形态计量分析中心于 21 世纪初建立,该框架基于 Dr. Verne Caviness 和同事的 MRI 体积学范式 [大脑发育。1999 年 7 月;21(5):289-95]。这是一个经典的连接矩阵,主要基于 DTI 束追踪出现之前的数据,我们称之为“DTI 前时代”人类结构连接矩阵。此外,我们还提供了一些代表性的例子,这些例子纳入了来自非人类灵长类动物的经过验证的结构连接信息,以及来自 DTI 束追踪研究的关于人类结构连接的最新信息。我们将其称为“DTI 时代”人类结构连接矩阵。这个较新的矩阵代表了一项正在进行的工作,由于缺乏经过验证的人类连接起源和终点以及途径主干的发现,因此必然是不完整的。重要的是,我们使用神经解剖学类型学来描述人类大脑中的不同类型的连接,这对于组织矩阵和未来的数据库至关重要。尽管细节丰富,但由于与人类纤维系统组织相关的数据来源主要局限于对解剖标本的大体解剖推断或从非人类灵长类动物实验中的途径追踪信息的推断,因此目前的矩阵可能被认为只是部分完整的 [Front Neuroanat. 2020;14:18, Front Neuroanat. 2022;16:1035420, 和脑成像行为。2021 年;15(3):1589-1621]。这些矩阵体现了大脑连接的系统描述,可以用于神经科学中的认知和临床研究,并且重要的是,它们可以指导进一步阐明、验证和完成人类 BCD 的研究工作 [Front Neuroanat. 2020;14:18]。