Suppr超能文献

用于评估泰国人群衰弱相关因素的人工神经网络模型。

An Artificial Neural Network Model for Assessing Frailty-Associated Factors in the Thai Population.

机构信息

Aging and Aging Palliative Care Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

出版信息

Int J Environ Res Public Health. 2020 Sep 18;17(18):6808. doi: 10.3390/ijerph17186808.

Abstract

Frailty, one of the major public health problems in the elderly, can result from multiple etiologic factors including biological and physical changes in the body which contribute to the reduction in the function of multiple bodily systems. A diagnosis of frailty can be reached using a variety of frailty assessment tools. In this study, general characteristics and health data were assessed using modified versions of Fried's Frailty Phenotype (mFFP) and the Frail Non-Disabled (FiND) questionnaire (mFiND) to construct a Self-Organizing Map (SOM). Trained data, composed of the component planes of each variable, were visualized using 2-dimentional hexagonal grid maps. The relationship between the variables and the final SOM was then investigated. The SOM model using the modified FiND questionnaire showed a correct classification rate (%CC) of about 66% rather than the model responded to mFFP models. The SOM Discrimination Index (SOMDI) identified cataracts/glaucoma, age, sex, stroke, polypharmacy, gout, and sufficiency of income, in that order, as the top frailty-associated factors. The SOM model, based on the mFiND questionnaire frailty assessment, is an appropriate tool for assessment of frailty in the Thai elderly. Cataracts/glaucoma, stroke, polypharmacy, and gout are all modifiable early prediction factors of frailty in the Thai elderly.

摘要

衰弱是老年人面临的主要公共健康问题之一,可能由多种病因引起,包括身体的生物和物理变化,这些变化导致多个身体系统的功能下降。可以使用多种衰弱评估工具来诊断衰弱。在这项研究中,使用 Fried 衰弱表型(mFFP)和衰弱非残疾(FiND)问卷(mFiND)的修改版本评估一般特征和健康数据,以构建自组织图(SOM)。使用二维六边形网格图可视化经过训练的数据,即每个变量的组成平面。然后研究变量与最终 SOM 之间的关系。使用修改后的 FiND 问卷的 SOM 模型的正确分类率(%CC)约为 66%,而不是对 mFFP 模型做出响应的模型。SOM 判别指数(SOMDI)确定白内障/青光眼、年龄、性别、中风、多种药物治疗、痛风和收入充足性,依次为与衰弱相关的主要因素。基于 mFiND 问卷衰弱评估的 SOM 模型是评估泰国老年人衰弱的合适工具。白内障/青光眼、中风、多种药物治疗和痛风都是泰国老年人衰弱的可修正早期预测因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验