Suppr超能文献

基于光学相干断层扫描(OCT)成像的中年相关性黄斑变性进展的机器学习

Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging.

作者信息

Bogunovic Hrvoje, Montuoro Alessio, Baratsits Magdalena, Karantonis Maria G, Waldstein Sebastian M, Schlanitz Ferdinand, Schmidt-Erfurth Ursula

机构信息

Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.

出版信息

Invest Ophthalmol Vis Sci. 2017 May 1;58(6):BIO141-BIO150. doi: 10.1167/iovs.17-21789.

Abstract

PURPOSE

To develop a data-driven interpretable predictive model of incoming drusen regression as a sign of disease activity and identify optical coherence tomography (OCT) biomarkers associated with its risk in intermediate age-related macular degeneration (AMD).

METHODS

Patients with AMD were observed every 3 months, using Spectralis OCT imaging, for a minimum duration of 12 months and up to a period of 60 months. Segmentation of drusen and the overlying layers was obtained using a graph-theoretic method, and the hyperreflective foci were segmented using a voxel classification method. Automated image analysis steps were then applied to identify and characterize individual drusen at baseline, and their development was monitored at every follow-up visit. Finally, a machine learning method based on a sparse Cox proportional hazard regression was developed to estimate a risk score and predict the incoming regression of individual drusen.

RESULTS

The predictive model was trained and evaluated on a longitudinal dataset of 61 eyes from 38 patients using cross-validation. The mean follow-up time was 37.8 ± 13.8 months. A total of 944 drusen were identified at baseline, out of which 249 (26%) regressed during follow-up. The prediction performance was evaluated as area under the curve (AUC) for different time periods. Prediction within the first 2 years achieved an AUC of 0.75.

CONCLUSIONS

The predictive model proposed in this study represents a promising step toward image-guided prediction of AMD progression. Machine learning is expected to accelerate and contribute to the development of new therapeutics that delay the progression of AMD.

摘要

目的

建立一个数据驱动的可解释预测模型,以预测即将发生的玻璃膜疣消退作为疾病活动的标志,并确定与中度年龄相关性黄斑变性(AMD)中其风险相关的光学相干断层扫描(OCT)生物标志物。

方法

使用Spectralis OCT成像对AMD患者每3个月观察一次,最短持续12个月,最长60个月。使用图论方法对玻璃膜疣及其上覆层进行分割,使用体素分类方法对高反射灶进行分割。然后应用自动图像分析步骤在基线时识别和表征个体玻璃膜疣,并在每次随访时监测其发展。最后,开发了一种基于稀疏Cox比例风险回归的机器学习方法来估计风险评分并预测个体玻璃膜疣即将发生的消退。

结果

使用交叉验证在来自38名患者的61只眼睛的纵向数据集上对预测模型进行训练和评估。平均随访时间为37.8±13.8个月。基线时共识别出944个玻璃膜疣,其中249个(26%)在随访期间消退。预测性能通过不同时间段的曲线下面积(AUC)进行评估。前2年内的预测AUC为0.75。

结论

本研究中提出的预测模型是朝着图像引导的AMD进展预测迈出的有希望的一步。机器学习有望加速并有助于开发延缓AMD进展的新疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验