Suppr超能文献

利用遥感数据对越南湄公河三角洲地区登革热发病率进行时间序列建模。

Time-series modelling of dengue incidence in the Mekong Delta region of Viet Nam using remote sensing data.

作者信息

Pham Nga Tt, Nguyen Cong T, Pineda-Cortel Maria Ruth B

机构信息

Vietnam National Space Center, Vietnam Academy of Science and Technology.

Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas.

出版信息

Western Pac Surveill Response J. 2020 Mar 21;11(1):13-21. doi: 10.5365/wpsar.2018.9.2.012. eCollection 2020 Jan-Mar.

Abstract

OBJECTIVE

This study aims to enhance the capacity of dengue prediction by investigating the relationship of dengue incidence with climate and environmental factors in the Mekong Delta region (MDR) of Viet Nam by using remote sensing data.

METHODS

To produce monthly data sets for each province, we extracted and aggregated precipitation data from the Global Satellite Mapping of Precipitation project and land surface temperatures and normalized difference vegetation indexes from the Moderate Resolution Imaging Spectroradiometer satellite observations. Monthly data sets from 2000 to 2016 were used to construct autoregressive integrated moving average (ARIMA) models to predict dengue incidence for 12 provinces across the study region.

RESULTS

The final models were able to predict dengue incidence from January to December 2016 that concurred with the observation that dengue epidemics occur mostly in rainy seasons. As a result, the obtained model presents a good fit at a regional level with the correlation value of 0.65 between predicted and reported dengue cases; nevertheless, its performance declines at the subregional scale.

CONCLUSION

We demonstrated the use of remote sensing data in time-series to develop a model of dengue incidence in the MDR of Viet Nam. Results indicated that this approach could be an effective method to predict regional dengue incidence and its trends.

摘要

目的

本研究旨在通过利用遥感数据调查越南湄公河三角洲地区(MDR)登革热发病率与气候和环境因素之间的关系,提高登革热预测能力。

方法

为生成每个省份的月度数据集,我们从全球降水卫星测绘项目中提取并汇总降水数据,以及从中分辨率成像光谱仪卫星观测中提取陆地表面温度和归一化植被指数。利用2000年至2016年的月度数据集构建自回归积分滑动平均(ARIMA)模型,以预测研究区域内12个省份的登革热发病率。

结果

最终模型能够预测2016年1月至12月的登革热发病率,这与登革热疫情大多发生在雨季的观察结果一致。因此,所获得的模型在区域层面拟合良好,预测的登革热病例与报告的登革热病例之间的相关值为0.65;然而,其在次区域尺度上的性能有所下降。

结论

我们展示了使用时间序列遥感数据来建立越南湄公河三角洲地区登革热发病率模型。结果表明,这种方法可能是预测区域登革热发病率及其趋势的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6688/7485513/c8a345d8a4e2/WPSAR.2020.11.1-015-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验