Suppr超能文献

评估利用历史吸烟暴露数据的不同方法以更好地选择肺癌筛查候选人:一项回顾性验证研究。

Assessing Different Approaches to Leveraging Historical Smoking Exposure Data to Better Select Lung Cancer Screening Candidates: A Retrospective Validation Study.

机构信息

School of Medicine, Case Western Reserve University, Cleveland, OH.

Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH.

出版信息

Nicotine Tob Res. 2021 Aug 4;23(8):1334-1340. doi: 10.1093/ntr/ntaa192.

Abstract

INTRODUCTION

There is mounting interest in the use of risk prediction models to guide lung cancer screening. Electronic health records (EHRs) could facilitate such an approach, but smoking exposure documentation is notoriously inaccurate. While the negative impact of inaccurate EHR data on screening practices reliant on dichotomized age and smoking exposure-based criteria has been demonstrated, less is known regarding its impact on the performance of model-based screening.

AIMS AND METHODS

Data were collected from a cohort of 37 422 ever-smokers between the ages of 55 and 74, seen at an academic safety-net healthcare system between 1999 and 2018. The National Lung Cancer Screening Trial (NLST) criteria, PLCOM2012 and LCRAT lung cancer risk prediction models were validated against time to lung cancer diagnosis. Discrimination (area under the receiver operator curve [AUC]) and calibration were assessed. The effect of substituting the last documented smoking variables with differentially retrieved "history conscious" measures was also determined.

RESULTS

The PLCOM2012 and LCRAT models had AUCs of 0.71 (95% CI, 0.69 to 0.73) and 0.72 (95% CI, 0.70 to 0.74), respectively. Compared with the NLST criteria, PLCOM2012 had a significantly greater time-dependent sensitivity (69.9% vs. 64.5%, p < .01) and specificity (58.3% vs. 56.4%, p < .001). Unlike the NLST criteria, the performances of the PLCOM2012 and LCRAT models were not prone to historical variability in smoking exposure documentation.

CONCLUSIONS

Despite the inaccuracies of EHR-documented smoking histories, leveraging model-based lung cancer risk estimation may be a reasonable strategy for screening, and is of greater value compared with using NLST criteria in the same setting.

IMPLICATIONS

EHRs are potentially well suited to aid in the risk-based selection of lung cancer screening candidates, but healthcare providers and systems may elect not to leverage EHR data due to prior work that has shown limitations in structured smoking exposure data quality. Our findings suggest that despite potential inaccuracies in the underlying EHR data, screening approaches that use multivariable models may perform significantly better than approaches that rely on simpler age and exposure-based criteria. These results should encourage providers to consider using pre-existing smoking exposure data with a model-based approach to guide lung cancer screening practices.

摘要

简介

使用风险预测模型来指导肺癌筛查的做法正受到越来越多的关注。电子健康记录(EHR)可以为此提供便利,但吸烟暴露记录的准确性却备受质疑。虽然基于二分年龄和吸烟暴露的标准的筛查实践依赖不准确的 EHR 数据所带来的负面影响已经得到证实,但人们对其对基于模型的筛查的性能的影响了解甚少。

目的和方法

本研究的数据来自于一个年龄在 55 至 74 岁之间的曾吸烟者队列,这些患者于 1999 年至 2018 年期间在一家学术性的医疗保障系统就诊。NLST 标准、PLCOM2012 和 LCRAT 肺癌风险预测模型针对肺癌诊断时间进行了验证。评估了区分度(接收者操作特征曲线下的面积[AUC])和校准度。还确定了用不同方式检索到的“有记忆”的吸烟变量替代最后记录的吸烟变量的效果。

结果

PLCOM2012 和 LCRAT 模型的 AUC 分别为 0.71(95%置信区间,0.69 至 0.73)和 0.72(95%置信区间,0.70 至 0.74)。与 NLST 标准相比,PLCOM2012 的时间依赖性敏感性(69.9%比 64.5%,p <.01)和特异性(58.3%比 56.4%,p <.001)均显著更高。与 NLST 标准不同的是,PLCOM2012 和 LCRAT 模型的性能不受吸烟暴露记录的历史变化的影响。

结论

尽管 EHR 记录的吸烟史存在不准确之处,但利用基于模型的肺癌风险估计进行筛查可能是一种合理的策略,与在相同环境中使用 NLST 标准相比,其价值更大。

意义

EHR 非常适合帮助基于风险选择肺癌筛查对象,但由于之前的研究表明结构化吸烟暴露数据质量存在局限性,医疗保健提供者和系统可能选择不利用 EHR 数据。我们的研究结果表明,尽管潜在的 EHR 数据存在不准确,但使用多变量模型的筛查方法的性能可能明显优于依赖简单的年龄和暴露标准的方法。这些结果应鼓励提供者考虑使用基于模型的方法,利用现有的吸烟暴露数据来指导肺癌筛查实践。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验