Li Xiaoxiao, Dvornek Nicha C, Zhuang Juntang, Ventola Pamela, Duncan James S
Biomedical Engineering, Yale University, New Haven, CT USA.
Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT USA.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:206-214. doi: 10.1007/978-3-030-00931-1_24. Epub 2018 Sep 13.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Finding the biomarkers associated with ASD is extremely helpful to understand the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatment. Although Deep Neural Networks (DNNs) have been applied in functional magnetic resonance imaging (fMRI) to identify ASD, understanding the data driven computational decision making procedure has not been previously explored. Therefore, in this work, we address the problem of interpreting reliable biomarkers associated with identifying ASD; specifically, we propose a 2-stage method that classifies ASD and control subjects using fMRI images and interprets the saliency features activated by the classifier. First, we trained an accurate DNN classifier. Then, for detecting the biomarkers, different from the DNN visualization works in computer vision, we take advantage of the anatomical structure of brain fMRI and develop a frequency-normalized sampling method to corrupt images. Furthermore, in the ASD vs. control subjects classification scenario, we provide a new approach to detect and characterize important brain features into three categories. The biomarkers we found by the proposed method are robust and consistent with previous findings in the literature. We also validate the detected biomarkers by neurological function decoding and comparing with the DNN activation maps.
自闭症谱系障碍(ASD)是一种复杂的神经发育障碍。找到与ASD相关的生物标志物对于理解该障碍的潜在根源极为有帮助,并且能够促成更早的诊断和更具针对性的治疗。尽管深度神经网络(DNN)已被应用于功能磁共振成像(fMRI)以识别ASD,但此前尚未探索对数据驱动的计算决策过程的理解。因此,在这项工作中,我们解决解释与识别ASD相关的可靠生物标志物的问题;具体而言,我们提出一种两阶段方法,该方法使用fMRI图像对ASD患者和对照受试者进行分类,并解释分类器激活的显著特征。首先,我们训练了一个准确的DNN分类器。然后,为了检测生物标志物,与计算机视觉中的DNN可视化工作不同,我们利用脑fMRI的解剖结构并开发一种频率归一化采样方法来破坏图像。此外,在ASD与对照受试者的分类场景中,我们提供了一种新方法来检测和表征重要的脑特征,并将其分为三类。我们通过所提出的方法找到的生物标志物具有稳健性,并且与文献中先前的发现一致。我们还通过神经功能解码并与DNN激活图进行比较来验证检测到的生物标志物。
Med Image Comput Comput Assist Interv. 2018-9
Med Image Comput Comput Assist Interv. 2019-10
Imaging Neurosci (Camb). 2024-7-12
BMC Med Inform Decis Mak. 2025-7-1
Soc Cogn Affect Neurosci. 2024-2-21
Front Neuroergon. 2020-10-27
Proc IEEE Inst Electr Electron Eng. 2021-5
Biomedicines. 2023-6-29
Proc IEEE Int Symp Biomed Imaging. 2018-4
Front Psychiatry. 2014-8-12
Nat Methods. 2011-6-26
Proc Natl Acad Sci U S A. 2010-11-15
Crit Care. 2002-12