文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习和功能磁共振成像对自闭症谱系障碍进行脑生物标志物解读

Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI.

作者信息

Li Xiaoxiao, Dvornek Nicha C, Zhuang Juntang, Ventola Pamela, Duncan James S

机构信息

Biomedical Engineering, Yale University, New Haven, CT USA.

Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT USA.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11072:206-214. doi: 10.1007/978-3-030-00931-1_24. Epub 2018 Sep 13.


DOI:10.1007/978-3-030-00931-1_24
PMID:32984865
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7519581/
Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Finding the biomarkers associated with ASD is extremely helpful to understand the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatment. Although Deep Neural Networks (DNNs) have been applied in functional magnetic resonance imaging (fMRI) to identify ASD, understanding the data driven computational decision making procedure has not been previously explored. Therefore, in this work, we address the problem of interpreting reliable biomarkers associated with identifying ASD; specifically, we propose a 2-stage method that classifies ASD and control subjects using fMRI images and interprets the saliency features activated by the classifier. First, we trained an accurate DNN classifier. Then, for detecting the biomarkers, different from the DNN visualization works in computer vision, we take advantage of the anatomical structure of brain fMRI and develop a frequency-normalized sampling method to corrupt images. Furthermore, in the ASD vs. control subjects classification scenario, we provide a new approach to detect and characterize important brain features into three categories. The biomarkers we found by the proposed method are robust and consistent with previous findings in the literature. We also validate the detected biomarkers by neurological function decoding and comparing with the DNN activation maps.

摘要

自闭症谱系障碍(ASD)是一种复杂的神经发育障碍。找到与ASD相关的生物标志物对于理解该障碍的潜在根源极为有帮助,并且能够促成更早的诊断和更具针对性的治疗。尽管深度神经网络(DNN)已被应用于功能磁共振成像(fMRI)以识别ASD,但此前尚未探索对数据驱动的计算决策过程的理解。因此,在这项工作中,我们解决解释与识别ASD相关的可靠生物标志物的问题;具体而言,我们提出一种两阶段方法,该方法使用fMRI图像对ASD患者和对照受试者进行分类,并解释分类器激活的显著特征。首先,我们训练了一个准确的DNN分类器。然后,为了检测生物标志物,与计算机视觉中的DNN可视化工作不同,我们利用脑fMRI的解剖结构并开发一种频率归一化采样方法来破坏图像。此外,在ASD与对照受试者的分类场景中,我们提供了一种新方法来检测和表征重要的脑特征,并将其分为三类。我们通过所提出的方法找到的生物标志物具有稳健性,并且与文献中先前的发现一致。我们还通过神经功能解码并与DNN激活图进行比较来验证检测到的生物标志物。

相似文献

[1]
Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI.

Med Image Comput Comput Assist Interv. 2018-9

[2]
Graph Neural Network for Interpreting Task-fMRI Biomarkers.

Med Image Comput Comput Assist Interv. 2019-10

[3]
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data.

Front Comput Neurosci. 2021-4-8

[4]
Diagnosis of Autism Spectrum Disorder Based on Functional Brain Networks with Deep Learning.

J Comput Biol. 2021-2

[5]
Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery.

Inf Process Med Imaging. 2019-6

[6]
GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification.

BMC Bioinformatics. 2021-7-22

[7]
Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification.

Heliyon. 2023-7-16

[8]
Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.

Neuroimage. 2023-7-15

[9]
A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks.

Behav Brain Res. 2023-8-24

[10]
Autistic Spectrum Disorder Detection and Structural Biomarker Identification Using Self-Attention Model and Individual-Level Morphological Covariance Brain Networks.

Front Neurosci. 2021-10-8

引用本文的文献

[1]
Applications of interpretable deep learning in neuroimaging: A comprehensive review.

Imaging Neurosci (Camb). 2024-7-12

[2]
Data-driven decision making in patient management: a systematic review.

BMC Med Inform Decis Mak. 2025-7-1

[3]
MiMICRI: Towards Domain-centered Counterfactual Explanations of Cardiovascular Image Classification Models.

FACCT 24 (2024). 2024-6

[4]
A fusion analytic framework for investigating functional brain connectivity differences using resting-state fMRI.

Front Neurosci. 2024-12-11

[5]
Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain.

Soc Cogn Affect Neurosci. 2024-2-21

[6]
Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics.

Front Neuroergon. 2020-10-27

[7]
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.

Proc IEEE Inst Electr Electron Eng. 2021-5

[8]
Unsupervised contrastive graph learning for resting-state functional MRI analysis and brain disorder detection.

Hum Brain Mapp. 2023-12-1

[9]
Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey.

Biomedicines. 2023-6-29

[10]
Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques.

J Healthc Eng. 2023

本文引用的文献

[1]
2-CHANNEL CONVOLUTIONAL 3D DEEP NEURAL NETWORK (2CC3D) FOR FMRI ANALYSIS: ASD CLASSIFICATION AND FEATURE LEARNING.

Proc IEEE Int Symp Biomed Imaging. 2018-4

[2]
Resting state functional magnetic resonance imaging and neural network classified autism and control.

Cortex. 2015-2

[3]
Biomarkers in autism.

Front Psychiatry. 2014-8-12

[4]
The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism.

Mol Psychiatry. 2013-6-18

[5]
Large-scale automated synthesis of human functional neuroimaging data.

Nat Methods. 2011-6-26

[6]
Neural signatures of autism.

Proc Natl Acad Sci U S A. 2010-11-15

[7]
Differentiating between autism spectrum disorders and other developmental disabilities in children who failed a screening instrument for ASD.

J Autism Dev Disord. 2007-3

[8]
Advances in functional and structural MR image analysis and implementation as FSL.

Neuroimage. 2004

[9]
Statistics review 6: Nonparametric methods.

Crit Care. 2002-12

[10]
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

Neuroimage. 2002-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索