Mandala Venkata S, McKay Matthew J, Shcherbakov Alexander A, Dregni Aurelio J, Kolocouris Antonios, Hong Mei
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece.
Res Sq. 2020 Sep 24:rs.3.rs-77124. doi: 10.21203/rs.3.rs-77124/v1.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Successful development of vaccines and antivirals against SARS-CoV-2 requires a comprehensive understanding of the essential proteins of the virus. The envelope (E) protein of SARS-CoV-2 assembles into a cation-selective channel that mediates virus budding, release, and host inflammation response. E blockage reduces virus pathogenicity while E deletion attenuates the virus. Here we report the 2.4 Å structure and drug-binding site of E's transmembrane (TM) domain, determined using solid-state nuclear magnetic resonance (NMR) spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow central pore. The middle of the TM segment is distorted from the ideal a-helical geometry due to three regularly spaced phenylalanine residues, which stack within each helix and between neighboring helices. These aromatic interactions, together with interhelical Val and Leu interdigitation, cause a dehydrated pore compared to the viroporins of influenza and HIV viruses. Hexamethylene amiloride and amantadine bind shallowly to polar residues at the N-terminal lumen, while acidic pH affects the C-terminal conformation. These results indicate that SARS-CoV-2 E forms a structurally robust but bipartite channel whose N- and C-terminal halves can interact with drugs, ions and other viral and host proteins semi-independently. This structure establishes the atomic basis for designing E inhibitors as antiviral drugs against SARS-CoV-2.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是当前新冠疫情的病原体。成功研发针对SARS-CoV-2的疫苗和抗病毒药物需要全面了解该病毒的关键蛋白。SARS-CoV-2的包膜(E)蛋白组装成一个阳离子选择性通道,介导病毒出芽、释放及宿主炎症反应。阻断E蛋白可降低病毒致病性,而缺失E蛋白则会使病毒减毒。在此,我们报告了利用固态核磁共振(NMR)光谱测定的E蛋白跨膜(TM)结构域的2.4 Å结构及药物结合位点。在模拟内质网高尔基体中间腔室(ERGIC)膜的脂质双层中,ETM形成一个围绕狭窄中心孔的五螺旋束。由于三个规则间隔的苯丙氨酸残基,TM片段的中部偏离了理想的α螺旋几何结构,这些残基在每个螺旋内部以及相邻螺旋之间堆积。与流感病毒和HIV病毒的病毒孔蛋白相比,这些芳香族相互作用以及螺旋间缬氨酸和亮氨酸的相互交错导致形成一个脱水孔。六甲铵和金刚烷胺与N端内腔的极性残基浅结合,而酸性pH影响C端构象。这些结果表明,SARS-CoV-2 E蛋白形成一个结构稳固但由两部分组成的通道,其N端和C端半部可半独立地与药物、离子及其他病毒和宿主蛋白相互作用。这一结构为设计作为抗SARS-CoV-2抗病毒药物的E蛋白抑制剂奠定了原子基础。