Suppr超能文献

基于深度学习的前额-后叶功能失衡,识别和验证主要精神障碍的亚型。

Identifying and validating subtypes within major psychiatric disorders based on frontal-posterior functional imbalance via deep learning.

机构信息

Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Mol Psychiatry. 2021 Jul;26(7):2991-3002. doi: 10.1038/s41380-020-00892-3. Epub 2020 Oct 1.

Abstract

Converging evidence increasingly implicates shared etiologic and pathophysiological characteristics among major psychiatric disorders (MPDs), such as schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). Examining the neurobiology of the psychotic-affective spectrum may greatly advance biological determination of psychiatric diagnosis, which is critical for the development of more effective treatments. In this study, ensemble clustering was developed to identify subtypes within a trans-diagnostic sample of MPDs. Whole brain amplitude of low-frequency fluctuations (ALFF) was used to extract the low-dimensional features for clustering in a total of 944 participants: 581 psychiatric patients (193 with SZ, 171 with BD, and 217 with MDD) and 363 healthy controls (HC). We identified two subtypes with differentiating patterns of functional imbalance between frontal and posterior brain regions, as compared to HC: (1) Archetypal MPDs (60% of MPDs) had increased frontal and decreased posterior ALFF, and decreased cortical thickness and white matter integrity in multiple brain regions that were associated with increased polygenic risk scores and enriched risk gene expression in brain tissues; (2) Atypical MPDs (40% of MPDs) had decreased frontal and increased posterior ALFF with no associated alterations in validity measures. Medicated Archetypal MPDs had lower symptom severity than their unmedicated counterparts; whereas medicated and unmedicated Atypical MPDs had no differences in symptom scores. Our findings suggest that frontal versus posterior functional imbalance as measured by ALFF is a novel putative trans-diagnostic biomarker differentiating subtypes of MPDs that could have implications for precision medicine.

摘要

越来越多的证据表明,精神障碍(MPD),如精神分裂症(SZ)、双相情感障碍(BD)和重度抑郁症(MDD),存在共同的病因和病理生理学特征。研究精神障碍的神经生物学可能会极大地推动精神病学诊断的生物学确定,这对于开发更有效的治疗方法至关重要。在这项研究中,我们开发了集成聚类来识别 MPD 跨诊断样本中的亚型。低频振幅(ALFF)用于提取共 944 名参与者(581 名精神病患者[193 名 SZ,171 名 BD 和 217 名 MDD]和 363 名健康对照者[HC])的低维特征进行聚类。我们确定了两种具有不同的额后脑区功能失衡模式的亚型:(1)典型 MPD(60%的 MPD)具有额部增加和后部减少的 ALFF,以及多个脑区的皮质厚度和白质完整性降低,这些脑区与增加的多基因风险评分和大脑组织中富集的风险基因表达相关;(2)非典型 MPD(40%的 MPD)具有额部减少和后部增加的 ALFF,且与效度测量无相关改变。典型 MPD 患者经药物治疗后,其症状严重程度低于未经药物治疗的患者;而经药物治疗和未经药物治疗的非典型 MPD 患者的症状评分没有差异。我们的研究结果表明,基于 ALFF 的额-后功能失衡是区分 MPD 亚型的一种新的潜在的跨诊断生物标志物,可能对精准医疗具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验