Suppr超能文献

基于快慢分解的新冠病毒19稳定性分析的Θ-SEIHRD数学模型

Θ-SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition.

作者信息

Nave OPhir, Hartuv Israel, Shemesh Uziel

机构信息

Department of Mathematics, Jerusalem College of Technology, Jerusalem, Israel.

Department of Computer Science, Jerusalem College of Technology, Jerusalem, Israel.

出版信息

PeerJ. 2020 Sep 21;8:e10019. doi: 10.7717/peerj.10019. eCollection 2020.

Abstract

In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.

摘要

一般来说,一个包含许多描述某一现象的线性/非线性微分方程的数学模型,并没有明确的系统变量层次结构。也就是说,系统中快速变量和慢速变量的识别并不明确。将一个系统分解为快速子系统和慢速子系统通常基于对所研究数学模型的直观认识和知识。在本研究中,我们将奇异摄动向量场(SPVF)方法应用于新冠疫情数学模型,以揭示该模型的层次结构。这种分解使我们能够在新坐标下将模型重写为快速子系统和慢速子系统的形式,从而仅用不同的渐近方法研究快速子系统。此外,这种分解使我们能够对模型进行稳定性分析,这在新冠疫情的情况下很重要。我们找到了该数学模型的稳定平衡点,并将模型结果与中国官方报告的结果进行了比较,发现拟合度约为96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e0/7513748/ee2f41755723/peerj-08-10019-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验