Suppr超能文献

开发新型人工智能以从冠状动脉造影视频中检测主要分支中具有临床意义的冠状动脉粥样硬化狭窄的存在。

Development of Novel Artificial Intelligence to Detect the Presence of Clinically Meaningful Coronary Atherosclerotic Stenosis in Major Branch from Coronary Angiography Video.

机构信息

Department of Medicine (Cardiology), Tokai University School of Medicine.

Department of Cardiology, New-Tokyo Hospital.

出版信息

J Atheroscler Thromb. 2021 Aug 1;28(8):835-843. doi: 10.5551/jat.59675. Epub 2020 Oct 2.

Abstract

AIM

The clinically meaningful coronary stenosis is diagnosed by trained interventional cardiologists. Whether artificial intelligence (AI) could detect coronary stenosis from CAG video is unclear.

METHODS

The 199 consecutive patients who underwent coronary arteriography (CAG) with chest pain between December 2018 and May 2019 was enrolled. Each patient underwent CAG with multiple view resulting in total numbers of 1,838 videos. A multi-layer 3-dimensional convolution neural network (CNN) was trained as an AI to detect clinically meaningful coronary artery stenosis diagnosed by the expert interventional cardiologist, using data from 146 patients (resulted in 1,359 videos) randomly selected from the entire dataset (training dataset). This training dataset was further split into 109 patients (989 videos) for derivation and 37 patients (370 videos) for validation. The AI developed in derivation cohort was tuned in validation cohort to make final model.

RESULTS

The final model was selected as the model with best performance in validation dataset. Then, the predictive accuracy of final model was tested with the remaining 53 patients (479 videos) in test dataset. Our AI model showed a c-statistic of 0.61 in validation dataset and 0.61 in test dataset, respectively.

CONCLUSION

An artificial intelligence applied to CAG videos could detect clinically meaningful coronary atherosclerotic stenosis diagnosed by expert cardiologists with modest predictive value. Further studies with improved AI at larger sample size is necessary.

摘要

目的

有临床意义的冠状动脉狭窄由经过培训的介入心脏病专家诊断。人工智能(AI)是否能够从 CAG 视频中检测到冠状动脉狭窄尚不清楚。

方法

本研究纳入了 2018 年 12 月至 2019 年 5 月期间因胸痛而行冠状动脉造影(CAG)的 199 例连续患者。每位患者均接受了 CAG 检查,共产生了 1838 个视频。一个多层 3 维卷积神经网络(CNN)被训练为 AI,用于检测由专家介入心脏病医师诊断的有临床意义的冠状动脉狭窄,使用从整个数据集(训练数据集)中随机选择的 146 例患者(产生 1359 个视频)的数据。该训练数据集进一步分为 109 例患者(989 个视频)用于推导和 37 例患者(370 个视频)用于验证。在验证队列中调整推导队列中开发的 AI 以建立最终模型。

结果

最终模型被选为验证数据集性能最佳的模型。然后,使用测试数据集中的其余 53 例患者(479 个视频)测试最终模型的预测准确性。我们的 AI 模型在验证数据集和测试数据集的预测准确率分别为 0.61 和 0.61。

结论

应用于 CAG 视频的人工智能可以检测出专家心脏病医师诊断的有临床意义的冠状动脉粥样硬化性狭窄,具有适度的预测价值。需要进一步研究更大样本量的改进型 AI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b36/8326176/00cc0e884f23/28_59675_1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验