Suppr超能文献

同质社会网络中具有两种不同传播抑制和态度调整机制的谣言传播模型的随机演化

The stochastic evolution of a rumor spreading model with two distinct spread inhibiting and attitude adjusting mechanisms in a homogeneous social network.

作者信息

Li Ming, Zhang Hong, Georgescu Paul, Li Tan

机构信息

School of Economics and Management, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, PR China.

Department of Mathematics, Technical University of Iaşi, Bd. Copou 11A, 700506 Iaşi, Romania.

出版信息

Physica A. 2021 Jan 15;562:125321. doi: 10.1016/j.physa.2020.125321. Epub 2020 Sep 29.

Abstract

In this paper, we propose and analyze from a stability viewpoint a deterministic, ODE-based class of rumor spreading models with two distinct inhibiting and adjusting mechanisms, together with its corresponding stochastic counterpart. For the deterministic model, a threshold parameter defined , called the basic influence number, is used to ascertain whether the rumors are prevailing or not. If , the rumor-free equilibrium is found to be locally asymptotically stable, while if it is shown that there is at least one additional rumor-prevailing equilibrium, which is necessarily locally asymptotically stable. For the stochastic model, we first show that there exists a unique global solution. Subsequently, we investigate the asymptotic behavior of the stochastic system around the equilibria of the deterministic system by constructing suitable Lyapunov functionals. Furthermore, numerical simulations are given to illustrate, support and enhance our theoretical analysis.

摘要

在本文中,我们从稳定性的角度提出并分析了一类基于常微分方程(ODE)的确定性谣言传播模型,该模型具有两种不同的抑制和调整机制,以及与之对应的随机模型。对于确定性模型,定义了一个阈值参数,称为基本影响数,用于确定谣言是否盛行。如果 ,则发现无谣言平衡点是局部渐近稳定的,而如果 ,则表明至少存在一个额外的谣言盛行平衡点,该平衡点必然是局部渐近稳定的。对于随机模型,我们首先证明存在唯一的全局解。随后,我们通过构造合适的李雅普诺夫泛函来研究随机系统在确定性系统平衡点附近的渐近行为。此外,还给出了数值模拟以说明、支持和加强我们的理论分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验