Suppr超能文献

一种用于通过灵活的脑皮层电图进行感觉事件检测的堆叠式稀疏自动编码器和反向传播网络模型。

A stacked sparse auto-encoder and back propagation network model for sensory event detection via a flexible ECoG.

作者信息

Idowu Oluwagbenga Paul, Huang Jianping, Zhao Yang, Samuel Oluwarotimi William, Yu Mei, Fang Peng, Li Guanglin

机构信息

CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055 China.

出版信息

Cogn Neurodyn. 2020 Oct;14(5):591-607. doi: 10.1007/s11571-020-09603-8. Epub 2020 Jun 1.

Abstract

Current prostheses are limited in their ability to provide direct sensory feedback to users with missing limb. Several efforts have been made to restore tactile sensation to amputees but the somatotopic tactile feedback often results in unnatural sensations, and it is yet unclear how and what information the somatosensory system receives during voluntary movement. The present study proposes an efficient model of stacked sparse autoencoder and back propagation neural network for detecting sensory events from a highly flexible electrocorticography (ECoG) electrode. During the mechanical stimulation with Von Frey (VF) filament on the plantar surface of rats' foot, simultaneous recordings of tactile afferent signals were obtained from primary somatosensory cortex (S1) in the brain. In order to achieve a model with optimal performance, Particle Swarm Optimization and Adaptive Moment Estimation (Adam) were adopted to select the appropriate number of neurons, hidden layers and learning rate of each sparse auto-encoder. We evaluated the stimulus-evoked sensation by using an automated up-down (UD) method otherwise called UDReader. The assessment of tactile thresholds with VF shows that the right side of the hind-paw was significantly more sensitive at the tibia-( = 6.50 × 10), followed by the saphenous-( = 7.84 × 10), and sural-( = 8.24 × 10). We then validated our proposed model by comparing with the state-of-the-art methods, and recorded accuracy of 98.8%, sensitivity of 96.8%, and specificity of 99.1%. Hence, we demonstrated the effectiveness of our algorithms in detecting sensory events through flexible ECoG recordings which could be a viable option in restoring somatosensory feedback.

摘要

目前的假肢在为肢体缺失者提供直接感官反馈方面能力有限。人们已经做出了多项努力来恢复截肢者的触觉,但躯体感觉触觉反馈往往会产生不自然的感觉,而且目前尚不清楚在自主运动过程中躯体感觉系统如何以及接收哪些信息。本研究提出了一种高效的堆叠稀疏自动编码器和反向传播神经网络模型,用于从高度灵活的脑皮层电图(ECoG)电极检测感觉事件。在用冯·弗里(VF)细丝对大鼠足底表面进行机械刺激期间,从大脑的初级躯体感觉皮层(S1)同步记录触觉传入信号。为了获得具有最佳性能的模型,采用粒子群优化和自适应矩估计(Adam)来选择每个稀疏自动编码器的合适神经元数量、隐藏层数和学习率。我们使用一种自动上下(UD)方法(也称为UDReader)评估刺激诱发的感觉。用VF评估触觉阈值表明,后爪右侧在胫骨处(=6.50×10)明显更敏感,其次是隐神经处(=7.84×10)和腓肠神经处(=8.24×10)。然后,我们通过与现有最先进方法进行比较来验证我们提出的模型,记录到的准确率为98.8%,灵敏度为96.8%,特异性为99.1%。因此,我们证明了我们的算法在通过灵活的ECoG记录检测感觉事件方面的有效性,这可能是恢复躯体感觉反馈的一个可行选择。

相似文献

1
A stacked sparse auto-encoder and back propagation network model for sensory event detection via a flexible ECoG.
Cogn Neurodyn. 2020 Oct;14(5):591-607. doi: 10.1007/s11571-020-09603-8. Epub 2020 Jun 1.
3
Lower-Limb Amputees Adjust Quiet Stance in Response to Manipulations of Plantar Sensation.
Front Neurosci. 2021 Feb 18;15:611926. doi: 10.3389/fnins.2021.611926. eCollection 2021.
4
Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration.
Brain Stimul. 2021 Sep-Oct;14(5):1184-1196. doi: 10.1016/j.brs.2021.07.009. Epub 2021 Aug 3.
5
Engineering Artificial Somatosensation Through Cortical Stimulation in Humans.
Front Syst Neurosci. 2018 Jun 4;12:24. doi: 10.3389/fnsys.2018.00024. eCollection 2018.
6
A Novel Framework Using Deep Auto-Encoders Based Linear Model for Data Classification.
Sensors (Basel). 2020 Nov 9;20(21):6378. doi: 10.3390/s20216378.
7
A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback.
Sci Robot. 2019 Feb 20;4(27). doi: 10.1126/scirobotics.aau8892.
8
High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations.
J Neural Eng. 2018 Oct;15(5):056002. doi: 10.1088/1741-2552/aac964. Epub 2018 Jun 1.
10
Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements.
Clin Neurophysiol. 2015 Nov;126(11):2150-61. doi: 10.1016/j.clinph.2015.01.005. Epub 2015 Jan 23.

本文引用的文献

1
Decoding Movement From Electrocorticographic Activity: A Review.
Front Neuroinform. 2019 Dec 3;13:74. doi: 10.3389/fninf.2019.00074. eCollection 2019.
2
Realizing Efficient EMG-Based Prosthetic Control Strategy.
Adv Exp Med Biol. 2019;1101:149-166. doi: 10.1007/978-981-13-2050-7_6.
3
Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach.
Cogn Neurodyn. 2019 Oct;13(5):437-452. doi: 10.1007/s11571-019-09533-0. Epub 2019 Apr 12.
4
Direct Electrical Stimulation in Electrocorticographic Brain-Computer Interfaces: Enabling Technologies for Input to Cortex.
Front Neurosci. 2019 Aug 7;13:804. doi: 10.3389/fnins.2019.00804. eCollection 2019.
5
Complex network based models of ECoG signals for detection of induced epileptic seizures in rats.
Cogn Neurodyn. 2019 Aug;13(4):325-339. doi: 10.1007/s11571-019-09527-y. Epub 2019 Mar 15.
6
Efficient Epileptic Seizure Prediction Based on Deep Learning.
IEEE Trans Biomed Circuits Syst. 2019 Oct;13(5):804-813. doi: 10.1109/TBCAS.2019.2929053. Epub 2019 Jul 17.
7
The somatosensory cortex receives information about motor output.
Sci Adv. 2019 Jul 10;5(7):eaaw5388. doi: 10.1126/sciadv.aaw5388. eCollection 2019 Jul.
8
Identifying signal-dependent information about the preictal state: A comparison across ECoG, EEG and EKG using deep learning.
EBioMedicine. 2019 Jul;45:422-431. doi: 10.1016/j.ebiom.2019.07.001. Epub 2019 Jul 9.
9
Deep learning-based electroencephalography analysis: a systematic review.
J Neural Eng. 2019 Aug 14;16(5):051001. doi: 10.1088/1741-2552/ab260c.
10
Metastable brain waves.
Nat Commun. 2019 Mar 5;10(1):1056. doi: 10.1038/s41467-019-08999-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验