Idowu Oluwagbenga Paul, Huang Jianping, Zhao Yang, Samuel Oluwarotimi William, Yu Mei, Fang Peng, Li Guanglin
CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.
Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055 China.
Cogn Neurodyn. 2020 Oct;14(5):591-607. doi: 10.1007/s11571-020-09603-8. Epub 2020 Jun 1.
Current prostheses are limited in their ability to provide direct sensory feedback to users with missing limb. Several efforts have been made to restore tactile sensation to amputees but the somatotopic tactile feedback often results in unnatural sensations, and it is yet unclear how and what information the somatosensory system receives during voluntary movement. The present study proposes an efficient model of stacked sparse autoencoder and back propagation neural network for detecting sensory events from a highly flexible electrocorticography (ECoG) electrode. During the mechanical stimulation with Von Frey (VF) filament on the plantar surface of rats' foot, simultaneous recordings of tactile afferent signals were obtained from primary somatosensory cortex (S1) in the brain. In order to achieve a model with optimal performance, Particle Swarm Optimization and Adaptive Moment Estimation (Adam) were adopted to select the appropriate number of neurons, hidden layers and learning rate of each sparse auto-encoder. We evaluated the stimulus-evoked sensation by using an automated up-down (UD) method otherwise called UDReader. The assessment of tactile thresholds with VF shows that the right side of the hind-paw was significantly more sensitive at the tibia-( = 6.50 × 10), followed by the saphenous-( = 7.84 × 10), and sural-( = 8.24 × 10). We then validated our proposed model by comparing with the state-of-the-art methods, and recorded accuracy of 98.8%, sensitivity of 96.8%, and specificity of 99.1%. Hence, we demonstrated the effectiveness of our algorithms in detecting sensory events through flexible ECoG recordings which could be a viable option in restoring somatosensory feedback.
目前的假肢在为肢体缺失者提供直接感官反馈方面能力有限。人们已经做出了多项努力来恢复截肢者的触觉,但躯体感觉触觉反馈往往会产生不自然的感觉,而且目前尚不清楚在自主运动过程中躯体感觉系统如何以及接收哪些信息。本研究提出了一种高效的堆叠稀疏自动编码器和反向传播神经网络模型,用于从高度灵活的脑皮层电图(ECoG)电极检测感觉事件。在用冯·弗里(VF)细丝对大鼠足底表面进行机械刺激期间,从大脑的初级躯体感觉皮层(S1)同步记录触觉传入信号。为了获得具有最佳性能的模型,采用粒子群优化和自适应矩估计(Adam)来选择每个稀疏自动编码器的合适神经元数量、隐藏层数和学习率。我们使用一种自动上下(UD)方法(也称为UDReader)评估刺激诱发的感觉。用VF评估触觉阈值表明,后爪右侧在胫骨处(=6.50×10)明显更敏感,其次是隐神经处(=7.84×10)和腓肠神经处(=8.24×10)。然后,我们通过与现有最先进方法进行比较来验证我们提出的模型,记录到的准确率为98.8%,灵敏度为96.8%,特异性为99.1%。因此,我们证明了我们的算法在通过灵活的ECoG记录检测感觉事件方面的有效性,这可能是恢复躯体感觉反馈的一个可行选择。