Suppr超能文献

使用反向推算算法估计新型冠状病毒肺炎的感染密度和流行规模。

Estimation of infection density and epidemic size of COVID-19 using the back-calculation algorithm.

作者信息

Liu Yukun, Qin Jing, Fan Yan, Zhou Yong, Follmann Dean A, Huang Chiung-Yu

机构信息

KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, 200262 China.

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland 20852 USA.

出版信息

Health Inf Sci Syst. 2020 Sep 28;8(1):28. doi: 10.1007/s13755-020-00122-8. eCollection 2020 Dec.

Abstract

The novel coronavirus (COVID-19) is continuing its spread across the world, claiming more than 160,000 lives and sickening more than 2,400,000 people as of April 21, 2020. Early research has reported a basic reproduction number (R0) between 2.2 to 3.6, implying that the majority of the population is at risk of infection if no intervention measures were undertaken. The true size of the COVID-19 epidemic remains unknown, as a significant proportion of infected individuals only exhibit mild symptoms or are even asymptomatic. A timely assessment of the evolving epidemic size is crucial for resource allocation and triage decisions. In this article, we modify the back-calculation algorithm to obtain a lower bound estimate of the number of COVID-19 infected persons in China in and outside the Hubei province. We estimate the infection density among infected and show that the drastic control measures enforced throughout China following the lockdown of Wuhan City effectively slowed down the spread of the disease in two weeks. We also investigate the COVID-19 epidemic size in South Korea and find a similar effect of its "test, trace, isolate, and treat" strategy. Our findings are expected to provide guidelines and enlightenment for surveillance and control activities of COVID-19 in other countries around the world.

摘要

新型冠状病毒(COVID-19)仍在全球范围内持续传播,截至2020年4月21日,已造成超过16万人死亡,240多万人感染。早期研究报告的基本再生数(R0)在2.2至3.6之间,这意味着如果不采取干预措施,大多数人都有感染风险。由于相当一部分感染者仅表现出轻微症状甚至无症状,COVID-19疫情的实际规模仍然未知。及时评估疫情规模的演变对于资源分配和分诊决策至关重要。在本文中,我们修改了反向计算算法,以获得中国湖北省内外COVID-19感染者数量的下限估计。我们估计了感染者中的感染密度,并表明在武汉市封城后,中国各地实施的严厉控制措施在两周内有效减缓了疾病的传播。我们还调查了韩国的COVID-19疫情规模,并发现其“检测、追踪、隔离和治疗”策略也有类似效果。我们的研究结果有望为世界其他国家的COVID-19监测和控制活动提供指导和启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87dc/7520865/ecc94aec0457/13755_2020_122_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验