Tigges Sebastian, Wöhrl Nicolas, Radev Ivan, Hagemann Ulrich, Heidelmann Markus, Nguyen Thai Binh, Gorelkov Stanislav, Schulz Stephan, Lorke Axel
Faculty of Physics and CENIDE, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany.
The hydrogen and fuel cell center (ZBT GmbH), Carl-Benz-Straße 201, 47057 Duisburg, Germany.
Beilstein J Nanotechnol. 2020 Sep 17;11:1419-1431. doi: 10.3762/bjnano.11.126. eCollection 2020.
Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal acetylacetonate precursors.
催化剂的成本效益、耐久性和可靠性以及其使用寿命是化学能量转换中的主要挑战。在此,我们展示了一种通过等离子体增强化学气相沉积(PE-CVD)合成Pt/C杂化材料的新颖一步法。由于在该过程中铂和碳的同时沉积,Pt/C杂化材料中的铂负载量、氧化程度以及非常窄的粒径分布都得到了精确调节。所合成的Pt/C杂化材料是用于燃料电池应用的有前景的电催化剂,因为与工业标准HiSPEC 4000相比,它们表现出显著提高的电化学长期稳定性。此外,PE-CVD工艺有望扩展到从其他市售金属乙酰丙酮前体普遍沉积含金属的碳材料。