Suppr超能文献

基于卷积神经网络快照集成的肺音分类

Lung Sound Classification Using Snapshot Ensemble of Convolutional Neural Networks.

作者信息

Nguyen Truc, Pernkopf Franz

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:760-763. doi: 10.1109/EMBC44109.2020.9176076.

Abstract

We propose a robust and efficient lung sound classification system using a snapshot ensemble of convolutional neural networks (CNNs). A robust CNN architecture is used to extract high-level features from log mel spectrograms. The CNN architecture is trained on a cosine cycle learning rate schedule. Capturing the best model of each training cycle allows to obtain multiple models settled on various local optima from cycle to cycle at the cost of training a single mode. Therefore, the snapshot ensemble boosts performance of the proposed system while keeping the drawback of expensive training of ensembles moderate. To deal with the class-imbalance of the dataset, temporal stretching and vocal tract length perturbation (VTLP) for data augmentation and the focal loss objective are used. Empirically, our system outperforms state-of-the-art systems for the prediction task of four classes (normal, crackles, wheezes, and both crackles and wheezes) and two classes (normal and abnormal (i.e. crackles, wheezes, and both crackles and wheezes)) and achieves 78.4% and 83.7% ICBHI specific micro-averaged accuracy, respectively. The average accuracy is repeated on ten random splittings of 80% training and 20% testing data using the ICBHI 2017 dataset of respiratory cycles.

摘要

我们提出了一种使用卷积神经网络(CNN)的快照集成的强大且高效的肺音分类系统。使用一种强大的CNN架构从对数梅尔频谱图中提取高级特征。该CNN架构在余弦周期学习率调度上进行训练。捕获每个训练周期的最佳模型,能够以训练单个模型的代价,逐周期获得多个处于不同局部最优的模型。因此,快照集成提高了所提出系统的性能,同时适度控制了集成训练成本高昂的缺点。为了处理数据集的类别不平衡问题,使用了时间拉伸和声道长度扰动(VTLP)进行数据增强,并采用了焦点损失目标。根据经验,我们的系统在四类(正常、湿啰音、哮鸣音以及同时存在湿啰音和哮鸣音)和两类(正常和异常(即湿啰音、哮鸣音以及同时存在湿啰音和哮鸣音))的预测任务上优于现有系统,分别实现了78.4%和83.7%的ICBHI特定微平均准确率。使用ICBHI 2017呼吸周期数据集,在80%训练数据和20%测试数据的十次随机划分上重复平均准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验