Department of Electrical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan.
Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
BMC Bioinformatics. 2024 Sep 12;22(Suppl 5):638. doi: 10.1186/s12859-024-05911-6.
Mild cognitive impairment (MCI) is the transition stage between the cognitive decline expected in normal aging and more severe cognitive decline such as dementia. The early diagnosis of MCI plays an important role in human healthcare. Current methods of MCI detection include cognitive tests to screen for executive function impairments, possibly followed by neuroimaging tests. However, these methods are expensive and time-consuming. Several studies have demonstrated that MCI and dementia can be detected by machine learning technologies from different modality data. This study proposes a multi-stream convolutional neural network (MCNN) model to predict MCI from face videos.
The total effective data are 48 facial videos from 45 participants, including 35 videos from normal cognitive participants and 13 videos from MCI participants. The videos are divided into several segments. Then, the MCNN captures the latent facial spatial features and facial dynamic features of each segment and classifies the segment as MCI or normal. Finally, the aggregation stage produces the final detection results of the input video. We evaluate 27 MCNN model combinations including three ResNet architectures, three optimizers, and three activation functions. The experimental results showed that the ResNet-50 backbone with Swish activation function and Ranger optimizer produces the best results with an F1-score of 89% at the segment level. However, the ResNet-18 backbone with Swish and Ranger achieves the F1-score of 100% at the participant level.
This study presents an efficient new method for predicting MCI from facial videos. Studies have shown that MCI can be detected from facial videos, and facial data can be used as a biomarker for MCI. This approach is very promising for developing accurate models for screening MCI through facial data. It demonstrates that automated, non-invasive, and inexpensive MCI screening methods are feasible and do not require highly subjective paper-and-pencil questionnaires. Evaluation of 27 model combinations also found that ResNet-50 with Swish is more stable for different optimizers. Such results provide directions for hyperparameter tuning to further improve MCI predictions.
轻度认知障碍(MCI)是正常衰老预期认知能力下降与更严重认知能力下降(如痴呆)之间的过渡阶段。MCI 的早期诊断在人类健康护理中起着重要作用。目前的 MCI 检测方法包括用于筛选执行功能障碍的认知测试,可能随后进行神经影像学测试。然而,这些方法既昂贵又耗时。几项研究表明,MCI 和痴呆可以通过来自不同模态数据的机器学习技术来检测。本研究提出了一种多流卷积神经网络(MCNN)模型,用于从人脸视频预测 MCI。
总有效数据为 45 名参与者的 48 个面部视频,包括 35 个正常认知参与者的视频和 13 个 MCI 参与者的视频。视频被分成多个片段。然后,MCNN 捕获每个片段的潜在面部空间特征和面部动态特征,并将片段分类为 MCI 或正常。最后,聚合阶段生成输入视频的最终检测结果。我们评估了 27 种 MCNN 模型组合,包括三种 ResNet 架构、三种优化器和三种激活函数。实验结果表明,具有 Swish 激活函数和 Ranger 优化器的 ResNet-50 主干在片段级别产生了最佳结果,F1 得分为 89%。然而,具有 Swish 和 Ranger 的 ResNet-18 主干在参与者级别达到了 100%的 F1 得分。
本研究提出了一种从人脸视频预测 MCI 的高效新方法。研究表明,MCI 可以从人脸视频中检测到,并且面部数据可以作为 MCI 的生物标志物。这种方法对于通过面部数据开发准确的 MCI 筛查模型非常有前景。它表明,自动化、非侵入性和廉价的 MCI 筛查方法是可行的,并且不需要高度主观的纸笔问卷。对 27 种模型组合的评估还发现,Swish 的 ResNet-50 对于不同的优化器更稳定。这些结果为进一步提高 MCI 预测的超参数调整提供了方向。