Suppr超能文献

拥挤增强扩散:高度缠结的自推进刚性细丝的精确理论

Crowding-Enhanced Diffusion: An Exact Theory for Highly Entangled Self-Propelled Stiff Filaments.

作者信息

Mandal Suvendu, Kurzthaler Christina, Franosch Thomas, Löwen Hartmut

机构信息

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Phys Rev Lett. 2020 Sep 25;125(13):138002. doi: 10.1103/PhysRevLett.125.138002.

Abstract

We study a strongly interacting crowded system of self-propelled stiff filaments by event-driven Brownian dynamics simulations and an analytical theory to elucidate the intricate interplay of crowding and self-propulsion. We find a remarkable increase of the effective diffusivity upon increasing the filament number density by more than one order of magnitude. This counterintuitive "crowded is faster" behavior can be rationalized by extending the concept of a confining tube pioneered by Doi and Edwards for highly entangled, crowded, passive to active systems. We predict a scaling theory for the effective diffusivity as a function of the Péclet number and the filament number density. Subsequently, we show that an exact expression derived for a single self-propelled filament with motility parameters as input can predict the nontrivial spatiotemporal dynamics over the entire range of length and timescales. In particular, our theory captures short-time diffusion, directed swimming motion at intermediate times, and the transition to complete orientational relaxation at long times.

摘要

我们通过事件驱动的布朗动力学模拟和一种解析理论,研究了一个由自驱动刚性细丝组成的强相互作用拥挤系统,以阐明拥挤和自推进之间复杂的相互作用。我们发现,当细丝数密度增加超过一个数量级时,有效扩散率显著增加。这种违反直觉的“拥挤更快”行为可以通过扩展由Doi和Edwards开创的用于高度缠结、拥挤的被动到主动系统的限制管概念来合理化。我们预测了有效扩散率作为佩克莱数和细丝数密度函数的标度理论。随后,我们表明,以运动参数作为输入为单个自驱动细丝推导的精确表达式可以预测在整个长度和时间尺度范围内的非平凡时空动力学。特别是,我们的理论捕捉了短时间扩散、中间时间的定向游动运动以及长时间向完全取向弛豫的转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验