Suppr超能文献

利用步行时的声发射估算膝关节负荷。

Estimating Knee Joint Load Using Acoustic Emissions During Ambulation.

机构信息

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

出版信息

Ann Biomed Eng. 2021 Mar;49(3):1000-1011. doi: 10.1007/s10439-020-02641-7. Epub 2020 Oct 9.

Abstract

Quantifying joint load in activities of daily life could lead to improvements in mobility for numerous people; however, current methods for assessing joint load are unsuitable for ubiquitous settings. The aim of this study is to demonstrate that joint acoustic emissions contain information to estimate this internal joint load in a potentially wearable implementation. Eleven healthy, able-bodied individuals performed ambulation tasks under varying speed, incline, and loading conditions while joint acoustic emissions and essential gait measures-electromyography, ground reaction forces, and motion capture trajectories-were collected. The gait measures were synthesized using a neuromuscular model to estimate internal joint contact force which was the target variable for subject-specific machine learning models (XGBoost) trained based on spectral, temporal, cepstral, and amplitude-based features of the joint acoustic emissions. The model using joint acoustic emissions significantly outperformed (p < 0.05) the best estimate without the sounds, the subject-specific average load (MAE = 0.31 ± 0.12 BW), for both seen (MAE = 0.08 ± 0.01 BW) and unseen (MAE = 0.21 ± 0.05 BW) conditions. This demonstrates that joint acoustic emissions contain information that correlates to internal joint contact force and that information is consistent such that unique cases can be estimated.

摘要

量化日常生活活动中的关节负荷可能会提高许多人的活动能力;然而,目前评估关节负荷的方法不适合无处不在的环境。本研究旨在证明关节声发射包含有关信息,可在潜在可穿戴设备中估算关节内部负荷。11 名健康、身体健全的个体在不同速度、坡度和负载条件下进行了步行任务,同时采集了关节声发射和基本步态测量值(肌电图、地面反力和运动捕捉轨迹)。使用神经肌肉模型综合步态测量值来估算内部关节接触力,该力是基于关节声发射的光谱、时间、倒谱和基于幅度的特征的基于机器学习的模型(XGBoost)的目标变量,该模型针对每个个体进行训练。使用关节声发射的模型显著优于(p < 0.05)未使用声音的最佳估计值,以及个体特定的平均负载(MAE = 0.31 ± 0.12 BW),无论是在可见(MAE = 0.08 ± 0.01 BW)还是不可见(MAE = 0.21 ± 0.05 BW)的情况下。这表明关节声发射包含与内部关节接触力相关的信息,并且信息是一致的,因此可以估计独特的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验