Suppr超能文献

人类真菌病原体胞外多糖的生物学与功能

Biology and function of exo-polysaccharides from human fungal pathogens.

作者信息

Chung Krystal Y, Brown Jessica C S

机构信息

Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.

出版信息

Curr Clin Microbiol Rep. 2020 Mar;7(1):1-11. doi: 10.1007/s40588-020-00137-5. Epub 2020 Jan 17.

Abstract

PURPOSE OF REVIEW

Environmental fungi such as and must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings.

RECENT FINDINGS

This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for and are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients.

SUMMARY

Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.

摘要

综述目的

环境真菌如[具体真菌名称1]和[具体真菌名称2]在从其环境生态位转移至人类肺部和其他器官的过程中,必须在许多不同且不断变化的环境中生存。真菌会改变其细胞表面和分泌的大分子以响应并操控周围环境。

最新发现

本综述聚焦于胞外多糖,即从细胞中运输出来并扩散至局部环境的糖链。[具体真菌名称1]和[具体真菌名称2]的主要胞外多糖分别是葡糖醛酸木聚糖甘露聚糖(GXM)和半乳糖胺半乳聚糖(GAG),它们在生长培养基和感染患者体内以高浓度积累。

总结

在此,我们讨论GXM和GAG的合成与输出、它们的免疫调节特性以及它们在生物膜形成中的作用。我们还提出了未来研究领域,以解决该领域中尚未解决的问题,这些问题可能有助于开发新的疾病治疗方法。

相似文献

1
Biology and function of exo-polysaccharides from human fungal pathogens.
Curr Clin Microbiol Rep. 2020 Mar;7(1):1-11. doi: 10.1007/s40588-020-00137-5. Epub 2020 Jan 17.
4
Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation.
mBio. 2016 Apr 5;7(2):e00252-16. doi: 10.1128/mBio.00252-16.
5
Galactosaminogalactan secreted from Aspergillus fumigatus and Aspergillus flavus induces platelet activation.
Microbes Infect. 2020 Sep;22(8):331-339. doi: 10.1016/j.micinf.2019.12.004. Epub 2020 Jan 18.
7
Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus.
Nanoscale. 2015 Sep 28;7(36):14996-5004. doi: 10.1039/c5nr04399a. Epub 2015 Aug 26.
8
-Derived Galactosaminogalactan Triggers Complement Activation on Human Platelets.
Front Immunol. 2020 Oct 6;11:550827. doi: 10.3389/fimmu.2020.550827. eCollection 2020.
9
Immunomodulatory Role of Capsular Polysaccharides Constituents of .
Front Med (Lausanne). 2019 Jun 19;6:129. doi: 10.3389/fmed.2019.00129. eCollection 2019.
10
Production of extracellular polysaccharides by CAP mutants of Cryptococcus neoformans.
Eukaryot Cell. 2009 Aug;8(8):1165-73. doi: 10.1128/EC.00013-09. Epub 2009 Jun 19.

引用本文的文献

1
Fungal Biofilm: An Overview of the Latest Nano-Strategies.
Antibiotics (Basel). 2025 Jul 17;14(7):718. doi: 10.3390/antibiotics14070718.
2
Elements of dissemination in cryptococcosis.
mBio. 2024 Dec 11;15(12):e0215523. doi: 10.1128/mbio.02155-23. Epub 2024 Oct 29.
3
Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts.
Appl Microbiol Biotechnol. 2023 Jul;107(14):4409-4427. doi: 10.1007/s00253-023-12589-y. Epub 2023 May 26.
4
Colony growth and biofilm formation of under simulated microgravity.
Front Microbiol. 2022 Sep 23;13:975763. doi: 10.3389/fmicb.2022.975763. eCollection 2022.
5
Antifungal and Antibiofilm Efficacy of Paeonol Treatment Against Biofilms Comprising and/or .
Front Cell Infect Microbiol. 2022 May 20;12:884793. doi: 10.3389/fcimb.2022.884793. eCollection 2022.

本文引用的文献

1
Ega3 from the fungal pathogen is an endo-α-1,4-galactosaminidase that disrupts microbial biofilms.
J Biol Chem. 2019 Sep 13;294(37):13833-13849. doi: 10.1074/jbc.RA119.009910. Epub 2019 Aug 15.
2
Immunomodulatory Role of Capsular Polysaccharides Constituents of .
Front Med (Lausanne). 2019 Jun 19;6:129. doi: 10.3389/fmed.2019.00129. eCollection 2019.
3
Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface.
Clin Microbiol Rev. 2019 May 29;32(3). doi: 10.1128/CMR.00138-18. Print 2019 Jun 19.
4
How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts.
J Mol Biol. 2019 Jul 26;431(16):2982-3009. doi: 10.1016/j.jmb.2019.05.003. Epub 2019 May 9.
5
Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa.
PLoS One. 2019 May 8;14(5):e0216085. doi: 10.1371/journal.pone.0216085. eCollection 2019.
6
Aspergillus-Pseudomonas interaction, relevant to competition in airways.
Med Mycol. 2019 Apr 1;57(Supplement_2):S228-S232. doi: 10.1093/mmy/myy087.
7
Galactosaminogalactan (GAG) and its multiple roles in pathogenesis.
Virulence. 2019 Dec;10(1):976-983. doi: 10.1080/21505594.2019.1568174. Epub 2019 Jan 22.
8
Recent Advances in Diagnosing Chronic Pulmonary Aspergillosis.
Front Microbiol. 2018 Aug 17;9:1810. doi: 10.3389/fmicb.2018.01810. eCollection 2018.
9
Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces.
J Fungi (Basel). 2018 Jul 29;4(3):88. doi: 10.3390/jof4030088.
10
The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis.
PLoS Pathog. 2018 May 18;14(5):e1006978. doi: 10.1371/journal.ppat.1006978. eCollection 2018 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验