Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA.
Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Mar;13(2):e1671. doi: 10.1002/wnan.1671. Epub 2020 Oct 12.
Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
放射性标记的基于金属的纳米颗粒(MNPs)在核医学和分子成像、药物输送和放射治疗领域引起了相当大的关注,因为它们可以潜在地用作诊断成像和/或治疗剂,甚至作为治疗诊断组合。在这里,我们对 MNPs 的设计和合成的最新进展进行了系统综述,主要侧重于它们的放射性标记策略以及它们体内药代动力学的决定因素,以及它们的预期应用将如何受到影响。为了澄清起见,我们将所有报道的 MNPs 的放射性标记策略分为间接和直接方法。虽然间接标记仅指使用双功能螯合剂或与 MNPs 连接的假体基团用于放射性核素的合成后标记,但我们发现已经开发了许多实用的直接标记方法来将放射性核素纳入 MNP 核而无需使用额外的试剂,包括化学吸附、放射性化学掺杂、强子轰击、封装和同位素或阳离子交换。从实际应用的角度来看,我们提出并讨论了一些相关的例子,从优缺点方面进行了讨论。我们进一步综述了 MNPs 体内药代动力学参数的决定因素,包括影响其体内吸收、分布、代谢和消除的因素,并讨论了放射性标记 MNPs 用于体内生物医学应用的发展中的挑战和机遇。总的来说,我们相信本综述中总结的累积进展将为设计和合成放射性标记的 MNPs 提供一个一般性指导,以实现其理想的治疗诊断能力。本文属于以下类别: 生物学中的纳米技术方法 > 生物学中的纳米系统 诊断工具 > 诊断纳米器件 治疗方法和药物发现 > 用于肿瘤疾病的纳米医学
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-3
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-7
Int J Mol Sci. 2024-5-10
Acc Chem Res. 2015-2-17
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020-3
Front Microbiol. 2023-2-24
Diagnostics (Basel). 2023-2-22
Cancer Nanotechnol. 2023
EJNMMI Radiopharm Chem. 2022-7-19
Front Pharmacol. 2022-1-7