Suppr超能文献

使用机器学习预测孤立性冠状动脉旁路移植术患者的术后住院时间

Predicting Postoperative Length of Stay for Isolated Coronary Artery Bypass Graft Patients Using Machine Learning.

作者信息

Alshakhs Fatima, Alharthi Hana, Aslam Nida, Khan Irfan Ullah, Elasheri Mohamed

机构信息

Department of Health Information Management & Technology, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam 34221-4237, Saudi Arabia.

Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 34221-4237, Saudi Arabia.

出版信息

Int J Gen Med. 2020 Oct 2;13:751-762. doi: 10.2147/IJGM.S250334. eCollection 2020.

Abstract

PURPOSE

Predictive analytics (PA) is a new trending approach in the field of healthcare that uses machine learning to build a prediction model using supervised learning algorithms. Isolated coronary artery bypass grafting (iCABG), an open-heart surgery, is commonly performed in the treatment of coronary heart disease.

AIM

The aim of this study was to develop and evaluate a model to predict postoperative length of stay (PLoS) for iCABG patients using supervised machine learning techniques, and to identify the features with the highest contribution to the model.

METHODS

This is a retrospective study that uses historic data of adult patients who underwent isolated CABG (iCABG). After initial data pre-processing, data imputation using the kNN method was applied. The study used five prediction models using Naïve Bayes, Decision Tree, Random Forest, Logistic Regression and k Nearest Neighbor algorithms. Data imbalance was managed using the following widely used methods: oversampling, undersampling, "Both", and random over-sampling examples (ROSE). The features selection process was conducted using the Boruta method. Two techniques were applied to examine the performance of the models, (70%, 30%) split and cross-validation, respectively. Models were evaluated by comparing their performance using AUC and other metrics.

RESULTS

In the final dataset, six distinct features and 621 instances were used to develop the models. A total of 20 models were developed using R statistical software. The model generated using Random Forest with "Both" resampling method and cross-validation technique was deemed the best fit (AUC=0.81; F1 score=0.82; and recall=0.82). Attributes found to be highly predictive of PLoS were pulmonary artery systolic, age, height, EuroScore II, intra-aortic balloon pump used, and complications during operation.

CONCLUSION

This study demonstrates the significance and effectiveness of building a model that predicts PLoS for iCABG patients using patient specifications and pre-/intra-operative measures.

摘要

目的

预测分析(PA)是医疗保健领域一种新的流行方法,它利用机器学习通过监督学习算法构建预测模型。单纯冠状动脉旁路移植术(iCABG)是一种心脏直视手术,常用于治疗冠心病。

目的

本研究的目的是使用监督机器学习技术开发并评估一个模型,以预测iCABG患者的术后住院时间(PLoS),并识别对该模型贡献最大的特征。

方法

这是一项回顾性研究,使用接受单纯冠状动脉旁路移植术(iCABG)的成年患者的历史数据。在进行初始数据预处理后,应用了使用k近邻法(kNN)的数据插补。该研究使用了基于朴素贝叶斯、决策树、随机森林、逻辑回归和k近邻算法的五种预测模型。使用以下广泛使用的方法来处理数据不平衡问题:过采样、欠采样、“两者皆用”以及随机过采样示例(ROSE)。特征选择过程使用Boruta方法进行。分别应用两种技术来检验模型的性能,即(70%,30%)分割和交叉验证。通过比较模型使用AUC和其他指标的性能来对模型进行评估。

结果

在最终数据集中,使用六个不同的特征和621个实例来开发模型。使用R统计软件共开发了20个模型。使用随机森林和“两者皆用”重采样方法以及交叉验证技术生成 的模型被认为是最佳拟合模型(AUC = 0.81;F1分数 = 0.82;召回率 = 0.82)。发现对PLoS具有高度预测性的属性包括肺动脉收缩压、年龄、身高、欧洲心脏手术风险评估系统II(EuroScore II)、是否使用主动脉内球囊泵以及手术期间的并发症。

结论

本研究证明了使用患者特征以及术前/术中测量值构建预测iCABG患者PLoS的模型的重要性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验