Suppr超能文献

干细胞生物学和神经发育中的表观转录组。

The epitranscriptome in stem cell biology and neural development.

机构信息

Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Biophysics, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA.

Department of Biochemistry and Biophysics, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA.

出版信息

Neurobiol Dis. 2020 Dec;146:105139. doi: 10.1016/j.nbd.2020.105139. Epub 2020 Oct 13.

Abstract

The blossoming field of epitranscriptomics has recently garnered attention across many fields by findings that chemical modifications on RNA have immense biological consequences. Methylation of nucleotides in RNA, including N6-methyladenosine (mA), 2-O-dimethyladenosine (mA), N1-methyladenosine (mA), 5-methylcytosine (mC), and isomerization of uracil to pseudouridine (Ψ), have the potential to alter RNA processing events and contribute to developmental processes and different diseases. Though the abundance and roles of some RNA modifications remain contentious, the epitranscriptome is thought to be especially relevant in stem cell biology and neurobiology. In particular, mA occurs at the highest levels in the brain and plays major roles in embryonic stem cell differentiation, brain development, and neurodevelopmental disorders. However, studies in these areas have reported conflicting results on epitranscriptomic regulation of stem cell pluripotency and mechanisms in neural development. In this review we provide an overview of the current understanding of several RNA modifications and disentangle the various findings on epitranscriptomic regulation of stem cell biology and neural development.

摘要

新兴的 RNA 转录后修饰组学领域最近在多个领域引起了关注,其研究发现 RNA 上的化学修饰具有巨大的生物学后果。RNA 核苷酸的甲基化,包括 N6-甲基腺苷(m6A)、2-O-二甲基腺苷(m1A)、N1-甲基腺苷(m1A)、5-甲基胞嘧啶(m5C)和尿嘧啶异构化为假尿嘧啶(Ψ),有可能改变 RNA 加工事件,并有助于发育过程和不同疾病。尽管一些 RNA 修饰的丰度和作用仍存在争议,但人们认为 RNA 转录后修饰组在干细胞生物学和神经生物学中尤为重要。特别是 m6A 在大脑中的丰度最高,在胚胎干细胞分化、大脑发育和神经发育障碍中发挥重要作用。然而,在这些领域的研究中,关于 RNA 转录后修饰对干细胞多能性的调控以及在神经发育中的作用机制的研究结果存在矛盾。在这篇综述中,我们概述了目前对几种 RNA 修饰的理解,并梳理了 RNA 转录后修饰对干细胞生物学和神经发育的调控的各种发现。

相似文献

1
The epitranscriptome in stem cell biology and neural development.干细胞生物学和神经发育中的表观转录组。
Neurobiol Dis. 2020 Dec;146:105139. doi: 10.1016/j.nbd.2020.105139. Epub 2020 Oct 13.
5
9
Deciphering the epitranscriptome: A green perspective.解读表观转录组:绿色视角
J Integr Plant Biol. 2016 Oct;58(10):822-835. doi: 10.1111/jipb.12483. Epub 2016 Jun 20.

引用本文的文献

2
Advances in Detection Methods for A-to-I RNA Editing.A-to-I RNA编辑检测方法的进展
Wiley Interdiscip Rev RNA. 2025 Mar-Apr;16(2):e70014. doi: 10.1002/wrna.70014.
7
m6A/m1A/m5C-Associated Methylation Alterations and Immune Profile in MDD.m6A/m1A/m5C 相关甲基化改变与 MDD 的免疫特征。
Mol Neurobiol. 2024 Oct;61(10):8000-8025. doi: 10.1007/s12035-024-04042-6. Epub 2024 Mar 8.
10
Advances in brain epitranscriptomics research and translational opportunities.脑表遗传学研究进展与转化机遇
Mol Psychiatry. 2024 Feb;29(2):449-463. doi: 10.1038/s41380-023-02339-x. Epub 2023 Dec 20.

本文引用的文献

4
Dynamic landscape and evolution of m6A methylation in human.人类 m6A 甲基化的动态景观和演变。
Nucleic Acids Res. 2020 Jun 19;48(11):6251-6264. doi: 10.1093/nar/gkaa347.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验