Novoseletskaya Ekaterina, Grigorieva Olga, Nimiritsky Peter, Basalova Nataliya, Eremichev Roman, Milovskaya Irina, Kulebyakin Konstantin, Kulebyakina Maria, Rodionov Sergei, Omelyanenko Nikolai, Efimenko Anastasia
Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.
Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
Front Cell Dev Biol. 2020 Sep 22;8:555378. doi: 10.3389/fcell.2020.555378. eCollection 2020.
Extracellular matrix (ECM) provides both structural support and dynamic microenvironment for cells regulating their behavior and fate. As a critical component of stem cell niche ECM maintains stem cells and activates their proliferation and differentiation under specific stimuli. Mesenchymal stem/stromal cells (MSCs) regulate tissue-specific stem cell functions locating in their immediate microenvironment and producing various bioactive factors, including ECM components. We evaluated the ability of MSC-produced ECM to restore stem and progenitor cell microenvironment and analyzed the possible mechanisms of its effects. Human MSC cell sheets were decellularized by different agents (detergents, enzymes, and apoptosis inductors) to select the optimized combination (CHAPS and DNAse I) based on the conservation of decellularized ECM (dECM) structure and effectiveness of DNA removal. Prepared dECM was non-immunogenic, supported MSC proliferation and formation of larger colonies in colony-forming unit-assay. Decellularized ECM effectively promoted MSC trilineage differentiation (adipogenic, osteogenic, and chondrogenic) compared to plastic or plastic covered by selected ECM components (collagen, fibronectin, laminin). Interestingly, dECM produced by human fibroblasts could not enhance MSC differentiation like MSC-produced dECM, indicating cell-specific functionality of dECM. We demonstrated the significant integrin contribution in dECM-cell interaction by blocking the stimulatory effects of dECM with RGD peptide and suggested the involvement of key intracellular signaling pathways activation (pERK/ERK and pFAK/FAK axes, pYAP/YAP and beta-catenin) in the observed processes based on the results of inhibitory analysis. Taken together, we suppose that MSC-produced dECM may mimic stem cell niche components and maintain multipotent progenitor cells to insure their effective response to external differentiating stimuli upon activation. The obtained data provide more insights into the possible role of MSC-produced ECM in stem and progenitor cell regulation within their niches. Our results are also useful for the developing of dECM-based cell-free products for regenerative medicine.
细胞外基质(ECM)为细胞提供结构支持和动态微环境,调节细胞行为和命运。作为干细胞生态位的关键组成部分,ECM维持干细胞,并在特定刺激下激活其增殖和分化。间充质干/基质细胞(MSCs)调节位于其紧邻微环境中的组织特异性干细胞功能,并产生包括ECM成分在内的各种生物活性因子。我们评估了MSC产生的ECM恢复干细胞和祖细胞微环境的能力,并分析了其作用的可能机制。通过不同试剂(去污剂、酶和凋亡诱导剂)对人MSC细胞片进行脱细胞处理,以基于脱细胞ECM(dECM)结构的保留和DNA去除的有效性选择优化组合(CHAPS和DNA酶I)。制备的dECM无免疫原性,在集落形成单位测定中支持MSC增殖并形成更大的集落。与塑料或覆盖有选定ECM成分(胶原蛋白、纤连蛋白、层粘连蛋白)的塑料相比,脱细胞ECM有效促进了MSC三系分化(成脂、成骨和软骨形成)。有趣的是,人成纤维细胞产生的dECM不能像MSC产生的dECM那样增强MSC分化,表明dECM具有细胞特异性功能。我们通过用RGD肽阻断dECM的刺激作用,证明了整合素在dECM-细胞相互作用中的重要贡献,并根据抑制分析结果提示关键细胞内信号通路激活(pERK/ERK和pFAK/FAK轴、pYAP/YAP和β-连环蛋白)参与了观察到的过程。综上所述,我们推测MSC产生的dECM可能模拟干细胞生态位成分,并维持多能祖细胞,以确保它们在激活后对外部分化刺激作出有效反应。获得的数据为MSC产生的ECM在其生态位内对干细胞和祖细胞调节中的可能作用提供了更多见解。我们的结果对于开发基于dECM的再生医学无细胞产品也很有用。