Suppr超能文献

基于机器学习的子宫内膜癌增强 CT 预测微卫星不稳定性和高肿瘤突变负荷。

Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers.

机构信息

Departments of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Sci Rep. 2020 Oct 20;10(1):17769. doi: 10.1038/s41598-020-72475-9.

Abstract

To evaluate whether radiomic features from contrast-enhanced computed tomography (CE-CT) can identify DNA mismatch repair deficient (MMR-D) and/or tumor mutational burden-high (TMB-H) endometrial cancers (ECs). Patients who underwent targeted massively parallel sequencing of primary ECs between 2014 and 2018 and preoperative CE-CT were included (n = 150). Molecular subtypes of EC were assigned using DNA polymerase epsilon (POLE) hotspot mutations and immunohistochemistry-based p53 and MMR protein expression. TMB was derived from sequencing, with > 15.5 mutations-per-megabase as a cut-point to define TMB-H tumors. After radiomic feature extraction and selection, radiomic features and clinical variables were processed with the recursive feature elimination random forest classifier. Classification models constructed using the training dataset (n = 105) were then validated on the holdout test dataset (n = 45). Integrated radiomic-clinical classification distinguished MMR-D from copy number (CN)-low-like and CN-high-like ECs with an area under the receiver operating characteristic curve (AUROC) of 0.78 (95% CI 0.58-0.91). The model further differentiated TMB-H from TMB-low (TMB-L) tumors with an AUROC of 0.87 (95% CI 0.73-0.95). Peritumoral-rim radiomic features were most relevant to both classifications (p ≤ 0.044). Radiomic analysis achieved moderate accuracy in identifying MMR-D and TMB-H ECs directly from CE-CT. Radiomics may provide an adjunct tool to molecular profiling, especially given its potential advantage in the setting of intratumor heterogeneity.

摘要

评估对比增强计算机断层扫描(CE-CT)的放射组学特征是否可以识别 DNA 错配修复缺陷(MMR-D)和/或肿瘤突变负担高(TMB-H)的子宫内膜癌(ECs)。纳入了 2014 年至 2018 年间接受原发性 ECs 靶向大规模平行测序和术前 CE-CT 的患者(n=150)。ECs 的分子亚型使用 DNA 聚合酶 epsilon(POLE)热点突变和基于免疫组化的 p53 和 MMR 蛋白表达来分配。TMB 来自测序,以 >15.5 个突变/兆碱基作为定义 TMB-H 肿瘤的切点。在提取和选择放射组学特征后,使用递归特征消除随机森林分类器处理放射组学特征和临床变量。使用训练数据集(n=105)构建的分类模型,然后在保留测试数据集(n=45)上进行验证。集成的放射组学-临床分类使用受试者工作特征曲线(AUROC)下的面积区分 MMR-D 与拷贝数(CN)低样和 CN 高样 ECs,为 0.78(95%CI 0.58-0.91)。该模型进一步区分了 TMB-H 与 TMB-L 肿瘤,AUROC 为 0.87(95%CI 0.73-0.95)。肿瘤周围边缘的放射组学特征与这两种分类都最相关(p≤0.044)。放射组学分析在直接从 CE-CT 识别 MMR-D 和 TMB-H ECs 方面具有中等准确性。放射组学可能为分子谱分析提供一种辅助工具,尤其是在肿瘤内异质性方面具有潜在优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d35c/7575573/1772ba5d7633/41598_2020_72475_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验