Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands.
Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
ACS Appl Mater Interfaces. 2020 Nov 4;12(44):49335-49345. doi: 10.1021/acsami.0c12020. Epub 2020 Oct 21.
Perfluorocarbon-loaded nanoparticles are powerful theranostic agents, which are used in the therapy of cancer and stroke and as imaging agents for ultrasound and F magnetic resonance imaging (MRI). Scaling up the production of perfluorocarbon-loaded nanoparticles is essential for clinical translation. However, it represents a major challenge as perfluorocarbons are hydrophobic and lipophobic. We developed a method for continuous-flow production of perfluorocarbon-loaded poly(lactic--glycolic acid) (PLGA) nanoparticles using a modular microfluidic system, with sufficient yields for clinical use. We combined two slit interdigital micromixers with a sonication flow cell to achieve efficient mixing of three phases: liquid perfluorocarbon, PLGA in organic solvent, and aqueous surfactant solution. The production rate was at least 30 times higher than with the conventional formulation. The characteristics of nanoparticles can be adjusted by changing the flow rates and type of solvent, resulting in a high PFC loading of 20-60 wt % and radii below 200 nm. The nanoparticles are nontoxic, suitable for F MRI and ultrasound imaging, and can dissolve oxygen. F MRI with perfluoro-15-crown-5 ether-loaded nanoparticles showed similar biodistribution as nanoparticles made with the conventional method and a fast clearance from the organs. Overall, we developed a continuous, modular method for scaled-up production of perfluorocarbon-loaded nanoparticles that can be potentially adapted for the production of other multiphase systems. Thus, it will facilitate the clinical translation of theranostic agents in the future.
载全氟碳纳米颗粒是一种强大的治疗诊断试剂,可用于癌症和中风的治疗,并可作为超声和 F 磁共振成像(MRI)的造影剂。扩大载全氟碳纳米颗粒的生产规模对于临床转化至关重要。然而,由于全氟碳化合物具有疏水性和脂溶性,因此这是一个重大挑战。我们使用模块化微流控系统开发了一种连续流动生产载全氟碳聚(乳酸-乙醇酸)(PLGA)纳米颗粒的方法,其产量足以满足临床需求。我们结合了两个狭缝叉指式微混合器和一个超声流动池,以实现三相(全氟碳液体、有机溶剂中的 PLGA 和水相表面活性剂溶液)的有效混合。与传统配方相比,生产速率至少提高了 30 倍。通过改变流速和溶剂类型,可以调整纳米颗粒的特性,从而实现 20-60wt%的高 PFC 负载和低于 200nm 的半径。这些纳米颗粒是无毒的,适合 F MRI 和超声成像,并能溶解氧气。用全氟-15-冠-5 醚载纳米颗粒进行 F MRI 显示,其与传统方法制备的纳米颗粒具有相似的生物分布,并能快速从器官中清除。总的来说,我们开发了一种连续的、模块化的方法,用于扩大载全氟碳纳米颗粒的生产规模,该方法有可能适用于其他多相系统的生产。因此,它将有助于未来治疗诊断试剂的临床转化。