Suppr超能文献

规划基于 CT 的成像特征对于基于机器学习的疼痛反应预测的重要性。

The importance of planning CT-based imaging features for machine learning-based prediction of pain response.

机构信息

Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany.

Department for Bioinformatics and Computational Biology, Informatik 12, Technical University of Munich (TUM), Boltzmannstraße 3, 85748, Garching, Germany.

出版信息

Sci Rep. 2023 Oct 13;13(1):17427. doi: 10.1038/s41598-023-43768-6.

Abstract

Patients suffering from painful spinal bone metastases (PSBMs) often undergo palliative radiation therapy (RT), with an efficacy of approximately two thirds of patients. In this exploratory investigation, we assessed the effectiveness of machine learning (ML) models trained on radiomics, semantic and clinical features to estimate complete pain response. Gross tumour volumes (GTV) and clinical target volumes (CTV) of 261 PSBMs were segmented on planning computed tomography (CT) scans. Radiomics, semantic and clinical features were collected for all patients. Random forest (RFC) and support vector machine (SVM) classifiers were compared using repeated nested cross-validation. The best radiomics classifier was trained on CTV with an area under the receiver-operator curve (AUROC) of 0.62 ± 0.01 (RFC; 95% confidence interval). The semantic model achieved a comparable AUROC of 0.63 ± 0.01 (RFC), significantly below the clinical model (SVM, AUROC: 0.80 ± 0.01); and slightly lower than the spinal instability neoplastic score (SINS; LR, AUROC: 0.65 ± 0.01). A combined model did not improve performance (AUROC: 0,74 ± 0,01). We could demonstrate that radiomics and semantic analyses of planning CTs allowed for limited prediction of therapy response to palliative RT. ML predictions based on established clinical parameters achieved the best results.

摘要

患有疼痛性脊柱骨转移(PSBMs)的患者通常接受姑息性放射治疗(RT),大约有三分之二的患者有效。在这项探索性研究中,我们评估了基于放射组学、语义和临床特征训练的机器学习(ML)模型来估计完全疼痛缓解的效果。在计划计算机断层扫描(CT)扫描上对 261 例 PSBM 的大体肿瘤体积(GTV)和临床靶区(CTV)进行了分割。收集了所有患者的放射组学、语义和临床特征。使用重复嵌套交叉验证比较随机森林(RFC)和支持向量机(SVM)分类器。在 CTV 上训练的最佳放射组学分类器的受试者工作特征曲线下面积(AUROC)为 0.62±0.01(RFC;95%置信区间)。语义模型的 AUROC 为 0.63±0.01(RFC),与临床模型(SVM,AUROC:0.80±0.01)相当,但明显低于脊柱不稳定肿瘤评分(SINS;LR,AUROC:0.65±0.01)。组合模型并未提高性能(AUROC:0.74±0.01)。我们可以证明,计划 CT 的放射组学和语义分析可以对姑息性 RT 的治疗反应进行有限的预测。基于既定临床参数的 ML 预测获得了最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a688/10576053/14e9dc454b04/41598_2023_43768_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验