Suppr超能文献

基于可解释深度学习回归的 MRI 乳房容积密度估计

Volumetric breast density estimation on MRI using explainable deep learning regression.

机构信息

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Q.02.4.45, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.

Department of Radiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2020 Oct 22;10(1):18095. doi: 10.1038/s41598-020-75167-6.

Abstract

To purpose of this paper was to assess the feasibility of volumetric breast density estimations on MRI without segmentations accompanied with an explainability step. A total of 615 patients with breast cancer were included for volumetric breast density estimation. A 3-dimensional regression convolutional neural network (CNN) was used to estimate the volumetric breast density. Patients were split in training (N = 400), validation (N = 50), and hold-out test set (N = 165). Hyperparameters were optimized using Neural Network Intelligence and augmentations consisted of translations and rotations. The estimated densities were evaluated to the ground truth using Spearman's correlation and Bland-Altman plots. The output of the CNN was visually analyzed using SHapley Additive exPlanations (SHAP). Spearman's correlation between estimated and ground truth density was ρ = 0.81 (N = 165, P < 0.001) in the hold-out test set. The estimated density had a median bias of 0.70% (95% limits of agreement = - 6.8% to 5.0%) to the ground truth. SHAP showed that in correct density estimations, the algorithm based its decision on fibroglandular and fatty tissue. In incorrect estimations, other structures such as the pectoral muscle or the heart were included. To conclude, it is feasible to automatically estimate volumetric breast density on MRI without segmentations, and to provide accompanying explanations.

摘要

本文旨在评估在没有分段的情况下结合可解释性步骤对 MRI 进行容积乳腺密度估计的可行性。共有 615 名乳腺癌患者纳入容积乳腺密度估计。使用三维回归卷积神经网络 (CNN) 来估计容积乳腺密度。患者分为训练集 (N = 400)、验证集 (N = 50) 和保留测试集 (N = 165)。使用神经网络智能优化超参数,并进行平移和旋转增强。使用 Spearman 相关系数和 Bland-Altman 图评估估计密度与真实密度的相关性。使用 SHapley Additive exPlanations (SHAP) 对 CNN 的输出进行可视化分析。保留测试集中,估计密度与真实密度的 Spearman 相关系数为 ρ=0.81(N=165,P<0.001)。估计密度与真实密度的中位数偏差为 0.70%(95%置信区间为-6.8%至 5.0%)。SHAP 表明,在正确的密度估计中,算法基于乳腺纤维腺体组织和脂肪组织做出决策。在不正确的估计中,会包含其他结构,如胸肌或心脏。总之,无需分段即可自动对 MRI 进行容积乳腺密度估计,并提供相关解释是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6d/7581772/02e45afce4ba/41598_2020_75167_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验