Warner John J, Wang Pengrui, Mellor William M, Hwang Henry H, Park Ji Hoon, Pyo Sang-Hyun, Chen Shaochen
Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093.
Carbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea.
Polym Chem. 2019 Sep 14;10(34):4665-4674. doi: 10.1039/c9py00999j. Epub 2019 Jul 19.
Green chemistry-based non-isocyanate polyurethanes (NIPU) are synthesized and 3D-printed via rapid, projection photopolymerization into compliant mechanisms of 3D structure with spatially-localized material properties. Trimethylolpropane allyl ether-cyclic carbonate is used to couple the unique properties of two types of reaction chemistry: (1) primary diamine-cyclic carbonate ring-opening conjugation for supplanting conventional isocyanate-polyol reactions in creating urethane groups, with the additional advantage of enabling modular segment interchangeability within the diurethane prepolymers; and (2) thiol-ene (click) conjugation for non-telechelic, low monodispersity, quasi-crystalline-capable, and alternating step-growth co-photopolymerization. Fourier Transform Infrared Spectroscopy is used to monitor the functional group transformation in reactions, and to confirm these process-associated molecular products. The extent of how these processes utilize molecular tunability to affect material properties were investigated through measurement-based comparison of the various polymer compositions: frequency-related dynamic mechanical analysis, tension-related elastic-deformation mechanical analysis, and material swelling analysis. Stained murine myoblasts cultured on NIPU slabs were evaluated via fluorescent microscopy for "green-chemistry" affects on cytocompatibility and cell adhesion to assess potential biofouling resistance. 3D multi-material structures with micro-features were printed, thus demonstrating the capability to spatially pattern different NIPU materials in a controlled manner and build compliant mechanisms.
基于绿色化学的非异氰酸酯聚氨酯(NIPU)通过快速投影光聚合合成并进行3D打印,形成具有空间局部化材料特性的3D结构柔性机构。三羟甲基丙烷烯丙基醚 - 环状碳酸酯用于结合两种反应化学的独特性质:(1)伯二胺 - 环状碳酸酯开环共轭,用于取代传统的异氰酸酯 - 多元醇反应以形成聚氨酯基团,还具有使二聚氨酯预聚物内的模块化链段可互换的额外优势;(2)硫醇 - 烯(点击)共轭,用于非遥爪型、低单分散性、具备准结晶能力的交替逐步增长共光聚合。傅里叶变换红外光谱用于监测反应中的官能团转化,并确认这些与过程相关的分子产物。通过对各种聚合物组合物进行基于测量的比较,研究了这些过程利用分子可调性影响材料性能的程度:频率相关的动态力学分析、拉伸相关的弹性变形力学分析和材料溶胀分析。通过荧光显微镜评估在NIPU平板上培养的染色小鼠成肌细胞,以研究“绿色化学”对细胞相容性和细胞粘附的影响,从而评估潜在的抗生物污染性。打印了具有微特征的3D多材料结构,从而证明了以可控方式对不同NIPU材料进行空间图案化并构建柔性机构的能力。