Luo Manman, Zhu Maguang, Wei Miaomiao, Shao Shuangshuang, Robin Malo, Wei Changting, Cui Zheng, Zhao Jianwen, Zhang Zhiyong
Printable Electronics Research Centre, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou 215123, P. R. China.
International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, P. R. China.
ACS Appl Mater Interfaces. 2020 Nov 4;12(44):49963-49970. doi: 10.1021/acsami.0c12539. Epub 2020 Oct 23.
Special radiation-hard and ultralow-power complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) are used in the fields of deep space, nuclear energy, and medical X-ray imaging. In this work, we first constructed radiation-hard, repairable, and sub-1 V-driven printed hybrid CMOS field-effect transistors (FETs) and ICs, which integrate printed carbon nanotube (CNT) (band gap ∼ 0.65 eV) p-type FETs and indium oxide (InO) (band gap ∼3.64 eV) n-type FETs on glass substrates using a printed PS-PMMA/[EMIM][TFSI] mixture as the gate dielectric layer. The PS-PMMA/[EMIM][TFSI] mixture gate dielectric layer not only lowered the supply voltage () by providing ultrahigh gate efficiency but also improved the anti-irradiation ability of the hybrid CMOS FETs and ICs. Specifically, the hybrid CMOS inverters exhibited rail-to-rail output with a high voltage gain and high noise margins at a low that could be scaled down to 0.4 V. Furthermore, the hybrid CMOS FETs and ICs showed excellent radiation hardness, that is, withstanding a 3 Mrad (Si) total irradiation dose (TID) at a dose rate of 560 rad s (Si), which is an exceptional result for CMOS transistors and ICs. Furthermore, the radiation-damaged CMOS FETs could be fully recovered by removing and reprinting the PS-PMMA/[EMIM][TFSI] mixture gate dielectric layer, indicating the ability to repair irradiation damage. This work provides an in-space IC fabrication technology.
特殊的抗辐射且超低功耗互补金属氧化物半导体(CMOS)集成电路用于深空、核能和医学X射线成像领域。在这项工作中,我们首先构建了抗辐射、可修复且由低于1V驱动的印刷混合CMOS场效应晶体管(FET)和集成电路,它们使用印刷的PS-PMMA/[EMIM][TFSI]混合物作为栅极介电层,在玻璃基板上集成了印刷碳纳米管(CNT)(带隙约0.65eV)p型FET和氧化铟(InO)(带隙约3.64eV)n型FET。PS-PMMA/[EMIM][TFSI]混合物栅极介电层不仅通过提供超高的栅极效率降低了电源电压(),还提高了混合CMOS FET和集成电路的抗辐射能力。具体而言,混合CMOS反相器在低至可降至0.4V的电压下呈现轨到轨输出,具有高电压增益和高噪声容限。此外,混合CMOS FET和集成电路表现出优异的抗辐射硬度,即在剂量率为560rad s(Si)的情况下能够承受3Mrad(Si)的总辐照剂量(TID),这对于CMOS晶体管和集成电路来说是一个出色的结果。此外,通过去除并重新印刷PS-PMMA/[EMIM][TFSI]混合物栅极介电层,受辐射损坏的CMOS FET可以完全恢复,这表明具有修复辐照损伤的能力。这项工作提供了一种空间集成电路制造技术。