Suppr超能文献

严重急性呼吸综合征冠状病毒2型移码RNA元件的结构改变突变

Structure-Altering Mutations of the SARS-CoV-2 Frame Shifting RNA Element.

作者信息

Schlick T, Zhu Q, Jain S, Yan S

出版信息

bioRxiv. 2020 Aug 30:2020.08.28.271965. doi: 10.1101/2020.08.28.271965.

Abstract

With the rapid rate of Covid-19 infections and deaths, treatments and cures besides hand washing, social distancing, masks, isolation, and quarantines are urgently needed. The treatments and vaccines rely on the basic biophysics of the complex viral apparatus. While proteins are serving as main drug and vaccine targets, therapeutic approaches targeting the 30,000 nucleotide RNA viral genome form important complementary approaches. Indeed, the high conservation of the viral genome, its close evolutionary relationship to other viruses, and the rise of gene editing and RNA-based vaccines all argue for a focus on the RNA agent itself. One of the key steps in the viral replication cycle inside host cells is the ribosomal frameshifting required for translation of overlapping open reading frames. The frameshifting element (FSE), one of three highly conserved regions of coronaviruses, includes an RNA pseudoknot considered essential for this ribosomal switching. In this work, we apply our graph-theory-based framework for representing RNA secondary structures, "RAG" (RNA-As Graphs), to alter key structural features of the FSE of the SARS-CoV-2 virus. Specifically, using RAG machinery of genetic algorithms for inverse folding adapted for RNA structures with pseudoknots, we computationally predict minimal mutations that destroy a structurally-important stem and/or the pseudoknot of the FSE, potentially dismantling the virus against translation of the polyproteins. Additionally, our microsecond molecular dynamics simulations of mutant structures indicate relatively stable secondary structures. These findings not only advance our computational design of RNAs containing pseudoknots; they pinpoint to key residues of the SARS-CoV-2 virus as targets for anti-viral drugs and gene editing approaches.

摘要

随着新冠病毒感染和死亡人数的迅速增加,除了洗手、保持社交距离、佩戴口罩、隔离和检疫之外,迫切需要治疗方法和治愈手段。治疗方法和疫苗依赖于复杂病毒机制的基本生物物理学原理。虽然蛋白质是主要的药物和疫苗靶点,但针对由30,000个核苷酸组成的RNA病毒基因组的治疗方法也构成了重要的补充方法。事实上,病毒基因组的高度保守性、它与其他病毒的密切进化关系,以及基因编辑和基于RNA的疫苗的兴起,都表明应将重点放在RNA制剂本身。宿主细胞内病毒复制周期的关键步骤之一是翻译重叠开放阅读框所需的核糖体移码。移码元件(FSE)是冠状病毒三个高度保守区域之一,其中包括一个对这种核糖体转换至关重要的RNA假结。在这项工作中,我们应用基于图论的框架“RAG”(RNA-As Graphs)来表示RNA二级结构,以改变严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒FSE的关键结构特征。具体而言,我们使用适用于带有假结的RNA结构的遗传算法反向折叠的RAG机制,通过计算预测破坏FSE结构重要茎和/或假结的最小突变,这可能会破坏病毒对多蛋白的翻译。此外,我们对突变结构的微秒级分子动力学模拟表明其二级结构相对稳定。这些发现不仅推进了我们对含有假结的RNA的计算设计;它们还指出了SARS-CoV-2病毒的关键残基作为抗病毒药物和基因编辑方法的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8411/7457599/d793548bb522/nihpp-2020.08.28.271965-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验