Suppr超能文献

深度学习预后模型有助于预警 COVID-19 高死亡风险患者:一项多中心研究。

A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study.

出版信息

IEEE J Biomed Health Inform. 2020 Dec;24(12):3576-3584. doi: 10.1109/JBHI.2020.3034296. Epub 2020 Dec 4.

Abstract

Since its outbreak in December 2019, the persistent coronavirus disease (COVID-19) became a global health emergency. It is imperative to develop a prognostic tool to identify high-risk patients and assist in the formulation of treatment plans. We retrospectively collected 366 severe or critical COVID-19 patients from four centers, including 70 patients who died within 14 days (labeled as high-risk patients) since their initial CT scan and 296 who survived more than 14 days or were cured (labeled as low-risk patients). We developed a 3D densely connected convolutional neural network (termed De-COVID19-Net) to predict the probability of COVID-19 patients belonging to the high-risk or low-risk group, combining CT and clinical information. The area under the curve (AUC) and other evaluation techniques were used to assess our model. The De-COVID19-Net yielded an AUC of 0.952 (95% confidence interval, 0.928-0.977) on the training set and 0.943 (0.904-0.981) on the test set. The stratified analyses indicated that our model's performance is independent of age, sex, and with/without chronic diseases. The Kaplan-Meier analysis revealed that our model could significantly categorize patients into high-risk and low-risk groups (p < 0.001). In conclusion, De-COVID19-Net can non-invasively predict whether a patient will die shortly based on the patient's initial CT scan with an impressive performance, which indicated that it could be used as a potential prognosis tool to alert high-risk patients and intervene in advance.

摘要

自 2019 年 12 月爆发以来,持续存在的冠状病毒病(COVID-19)已成为全球卫生紧急事件。开发一种预后工具来识别高危患者并协助制定治疗计划至关重要。我们回顾性地从四个中心收集了 366 例严重或危急的 COVID-19 患者,其中包括 70 例在首次 CT 扫描后 14 天内死亡的患者(标记为高危患者)和 296 例存活超过 14 天或治愈的患者(标记为低危患者)。我们开发了一种 3D 密集连接卷积神经网络(称为 De-COVID19-Net),结合 CT 和临床信息,预测 COVID-19 患者属于高危或低危组的概率。使用曲线下面积(AUC)和其他评估技术来评估我们的模型。De-COVID19-Net 在训练集上的 AUC 为 0.952(95%置信区间,0.928-0.977),在测试集上的 AUC 为 0.943(0.904-0.981)。分层分析表明,我们的模型的性能独立于年龄、性别以及是否患有慢性疾病。Kaplan-Meier 分析表明,我们的模型可以根据患者的初始 CT 扫描将患者分为高危和低危组(p < 0.001)。总之,De-COVID19-Net 可以根据患者的初始 CT 扫描非侵入性地预测患者是否会在短期内死亡,具有出色的性能,这表明它可以作为一种有前途的预后工具,以提醒高危患者并提前干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e114/8545180/0b11cab3170a/tian1-3034296.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验