Suppr超能文献

利用深度学习模型整合临床参数和胸部 CT 图像预测 COVID-19 患者的氧疗需求。

Prediction of oxygen supplementation by a deep-learning model integrating clinical parameters and chest CT images in COVID-19.

机构信息

Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan.

Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan.

出版信息

Jpn J Radiol. 2023 Dec;41(12):1359-1372. doi: 10.1007/s11604-023-01466-3. Epub 2023 Jul 13.

Abstract

PURPOSE

As of March 2023, the number of patients with COVID-19 worldwide is declining, but the early diagnosis of patients requiring inpatient treatment and the appropriate allocation of limited healthcare resources remain unresolved issues. In this study we constructed a deep-learning (DL) model to predict the need for oxygen supplementation using clinical information and chest CT images of patients with COVID-19.

MATERIALS AND METHODS

We retrospectively enrolled 738 patients with COVID-19 for whom clinical information (patient background, clinical symptoms, and blood test findings) was available and chest CT imaging was performed. The initial data set was divided into 591 training and 147 evaluation data. We developed a DL model that predicted oxygen supplementation by integrating clinical information and CT images. The model was validated at two other facilities (n = 191 and n = 230). In addition, the importance of clinical information for prediction was assessed.

RESULTS

The proposed DL model showed an area under the curve (AUC) of 89.9% for predicting oxygen supplementation. Validation from the two other facilities showed an AUC > 80%. With respect to interpretation of the model, the contribution of dyspnea and the lactate dehydrogenase level was higher in the model.

CONCLUSIONS

The DL model integrating clinical information and chest CT images had high predictive accuracy. DL-based prediction of disease severity might be helpful in the clinical management of patients with COVID-19.

摘要

目的

截至 2023 年 3 月,全球 COVID-19 患者数量正在下降,但仍存在需要住院治疗的患者的早期诊断和有限医疗资源的合理分配等未解决的问题。在本研究中,我们构建了一个深度学习(DL)模型,使用 COVID-19 患者的临床信息和胸部 CT 图像来预测需要补充氧气的情况。

材料和方法

我们回顾性纳入了 738 例 COVID-19 患者,这些患者有临床信息(患者背景、临床症状和血液检查结果)和胸部 CT 成像。初始数据集分为 591 个训练数据和 147 个评估数据。我们开发了一个将临床信息和 CT 图像整合在一起预测氧气补充的 DL 模型。该模型在另外两个机构(n=191 和 n=230)进行了验证。此外,还评估了临床信息对预测的重要性。

结果

所提出的 DL 模型预测氧气补充的曲线下面积(AUC)为 89.9%。来自另外两个机构的验证结果显示 AUC 值均大于 80%。在模型解释方面,呼吸困难和乳酸脱氢酶水平的贡献更高。

结论

整合临床信息和胸部 CT 图像的 DL 模型具有较高的预测准确性。基于 DL 的疾病严重程度预测可能有助于 COVID-19 患者的临床管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9174/10687147/f917e1325c52/11604_2023_1466_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验