Suppr超能文献

液-液相分离驱动活性核质的区室化。

Liquid-liquid phase separation driven compartmentalization of reactive nucleoplasm.

机构信息

Department of Chemistry, Iowa State University, Ames, IA 50011, United States of America.

Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States of America.

出版信息

Phys Biol. 2021 Jan 7;18(1):015001. doi: 10.1088/1478-3975/abc5ad.

Abstract

The nucleus of eukaryotic cells harbors active and out of equilibrium environments conducive to diverse gene regulatory processes. On a molecular scale, gene regulatory processes take place within hierarchically compartmentalized sub-nuclear bodies. While the impact of nuclear structure on gene regulation is widely appreciated, it has remained much less clear whether and how gene regulation is impacting nuclear order itself. Recently, the liquid-liquid phase separation emerged as a fundamental mechanism driving the formation of biomolecular condensates, including membrane-less organelles, chromatin territories, and transcriptional domains. The transience and environmental sensitivity of biomolecular condensation are strongly suggestive of kinetic gene-regulatory control of phase separation. To better understand kinetic aspects controlling biomolecular phase-separation, we have constructed a minimalist model of the reactive nucleoplasm. The model is based on the Cahn-Hilliard formulation of ternary protein-RNA-nucleoplasm components coupled to non-equilibrium and spatially dependent gene expression. We find a broad range of kinetic regimes through an extensive set of simulations where the interplay of phase separation and reactive timescales can generate heterogeneous multi-modal gene expression patterns. Furthermore, the significance of this finding is that heterogeneity of gene expression is linked directly with the heterogeneity of length-scales in phase-separated condensates.

摘要

真核细胞的核内环境活跃且处于非平衡状态,有利于多种基因调控过程。在分子水平上,基因调控过程发生在分层分隔的亚核体内。虽然核结构对基因调控的影响已被广泛认识,但基因调控是否以及如何影响核结构本身仍不清楚。最近,液-液相分离作为一种基本机制,驱动了生物分子凝聚物的形成,包括无膜细胞器、染色质区域和转录域。生物分子凝聚的瞬态和环境敏感性强烈提示了相分离的动力学基因调控控制。为了更好地理解控制生物分子相分离的动力学方面,我们构建了一个简化的活性核浆的反应模型。该模型基于三元蛋白-RNA-核浆成分的 Cahn-Hilliard 公式,与非平衡和空间相关的基因表达相耦合。我们通过广泛的模拟发现了广泛的动力学范围,其中相分离和反应时间尺度的相互作用可以产生异质的多模态基因表达模式。此外,这一发现的意义在于,基因表达的异质性与相分离凝聚物中长度尺度的异质性直接相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9650/8201646/bd32944c6e52/nihms-1699554-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验