Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
Departament de Química Física, Universitat de València, 46100 Burjassot, Spain.
J Proteome Res. 2020 Nov 6;19(11):4291-4315. doi: 10.1021/acs.jproteome.0c00779. Epub 2020 Oct 29.
The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.
2019 年末出现的冠状病毒 SARS-CoV-2 导致了 COVID-19 大流行的突破,目前越来越多的国家受到了这一大流行的影响。大流行的发展也促使科学界做出了前所未有的努力,以了解病毒感染的分子基础,并提出合理的药物设计策略,以减轻严重的 COVID-19 发病率。在这种情况下,结构生物物理学和分子建模与模拟两个领域之间形成了强大的协同作用,从原子水平上解析了病毒的关键蛋白装置,并揭示了关键病毒过程的动态方面。在这篇综述中,我们重点介绍了这些研究如何有助于理解 SARS-CoV-2 的感染机制,并提出了新的、原创的抑制剂来抑制病毒的关键功能。这篇综述涉及 SARS-CoV-2 的刺突蛋白,包括这种结构蛋白进入人体细胞的作用模式,以及非结构病毒蛋白,重点关注研究最多的蛋白酶,并提出了涉及其中一些结构域的替代机制,如 SARS 独特结构域。我们证明,分子建模和模拟是一种有效的方法,可以收集关键生物过程的信息,从而指导合理的分子设计策略。