Colombi Davide, Villani Gabriele D, Maffi Gabriele, Risoli Camilla, Bodini Flavio C, Petrini Marcello, Morelli Nicola, Anselmi Pietro, Milanese Gianluca, Silva Mario, Sverzellati Nicola, Michieletti Emanuele
Department of Radiological Functions, Radiology Unit, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121, Piacenza, Italy.
Department of Medicine and Surgery (DiMeC), Unit "Scienze Radiologiche", University of Parma, Padiglione Barbieri, V. Gramsci 14, Parma, Italy.
Emerg Radiol. 2020 Dec;27(6):701-710. doi: 10.1007/s10140-020-01867-1. Epub 2020 Oct 29.
To test the association between death and both qualitative and quantitative CT parameters obtained visually and by software in coronavirus disease (COVID-19) early outbreak.
The study analyzed retrospectively patients underwent chest CT at hospital admission for COVID-19 pneumonia suspicion, between February 21 and March 6, 2020. CT was performed in case of hypoxemia or moderate-to-severe dyspnea. CT scans were analyzed for quantitative and qualitative features obtained visually and by software. Cox proportional hazards regression analysis examined the association between variables and overall survival (OS). Three models were built for stratification of mortality risk: clinical, clinical/visual CT evaluation, and clinical/software-based CT assessment. AUC for each model was used to assess performance in predicting death.
The study included 248 patients (70% males, median age 68 years). Death occurred in 78/248 (32%) patients. Visual pneumonia extent > 40% (HR 2.15, 95% CI 1.2-3.85, P = 0.01), %high attenuation area - 700 HU > 35% (HR 2.17, 95% CI 1.2-3.94, P = 0.01), exudative consolidations (HR 2.85-2.93, 95% CI 1.61-5.05/1.66-5.16, P < 0.001), visual CAC score > 1 (HR 2.76-3.32, 95% CI 1.4-5.45/1.71-6.46, P < 0.01/P < 0.001), and CT classified as COVID-19 and other disease (HR 1.92-2.03, 95% CI 1.01-3.67/1.06-3.9, P = 0.04/P = 0.03) were significantly associated with shorter OS. Models including CT parameters (AUC 0.911-0.913, 95% CI 0.873-0.95/0.875-0.952) were better predictors of death as compared to clinical model (AUC 0.869, 95% CI 0.816-0.922; P = 0.04 for both models).
In COVID-19 patients, qualitative and quantitative chest CT parameters obtained visually or by software are predictors of mortality. Predictive models including CT metrics were better predictors of death in comparison to clinical model.
检测在冠状病毒病(COVID-19)早期爆发时,通过视觉观察和软件获得的胸部CT定性和定量参数与死亡之间的关联。
本研究回顾性分析了2020年2月21日至3月6日期间因疑似COVID-19肺炎而在入院时接受胸部CT检查的患者。在出现低氧血症或中重度呼吸困难的情况下进行CT检查。对CT扫描的视觉观察和软件获得的定量和定性特征进行分析。Cox比例风险回归分析检查变量与总生存期(OS)之间的关联。构建了三个用于死亡风险分层的模型:临床模型、临床/视觉CT评估模型和临床/基于软件的CT评估模型。每个模型的AUC用于评估预测死亡的性能。
该研究纳入了248例患者(70%为男性,中位年龄68岁)。78/248(32%)例患者死亡。视觉上肺炎范围>40%(HR 2.15,95%CI 1.2 - 3.85,P = 0.01)、%高衰减区域 - 700 HU>35%(HR 2.17,95%CI 1.2 - 3.94,P = 0.01)、渗出性实变(HR 2.85 - 2.93,95%CI 1.61 - 5.05/1.66 - 5.16,P < 0.001)、视觉冠状动脉钙化(CAC)评分>1(HR 2.76 - 3.32,95%CI 1.4 - 5.45/1.71 - 6.46,P < 0.01/P < 0.001)以及CT分类为COVID-19和其他疾病(HR 1.92 - 2.03,95%CI 1.01 - 3.67/1.06 - 3.9,P = 0.04/P = 0.03)与较短的OS显著相关。与临床模型(AUC 0.869,95%CI 0.816 - 0.922;两个模型P均 = 0.04)相比,包含CT参数的模型(AUC 0.911 - 0.913,95%CI 0.873 - 0.95/0.875 - 0.952)是更好的死亡预测指标。
在COVID-19患者中,通过视觉观察或软件获得的胸部CT定性和定量参数是死亡的预测指标。与临床模型相比,包含CT指标的预测模型是更好的死亡预测指标。