Suppr超能文献

鉴定分子异质性胶质母细胞瘤亚群的时空动态。

Identifying the spatial and temporal dynamics of molecularly-distinct glioblastoma sub-populations.

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.

Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, 85054, USA.

出版信息

Math Biosci Eng. 2020 Jul 16;17(5):4905-4941. doi: 10.3934/mbe.2020267.

Abstract

Glioblastomas (GBMs) are the most aggressive primary brain tumours and have no known cure. Each individual tumour comprises multiple sub-populations of genetically-distinct cells that may respond differently to targeted therapies and may contribute to disappointing clinical trial results. Image-localized biopsy techniques allow multiple biopsies to be taken during surgery and provide information that identifies regions where particular sub-populations occur within an individual GBM, thus providing insight into their regional genetic variability. These sub-populations may also interact with one another in a competitive or cooperative manner; it is important to ascertain the nature of these interactions, as they may have implications for responses to targeted therapies. We combine genetic information from biopsies with a mechanistic model of interacting GBM sub-populations to characterise the nature of interactions between two commonly occurring GBM sub-populations, those with EGFR and PDGFRA genes amplified. We study population levels found across image-localized biopsy data from a cohort of 25 patients and compare this to model outputs under competitive, cooperative and neutral interaction assumptions. We explore other factors affecting the observed simulated sub-populations, such as selection advantages and phylogenetic ordering of mutations, which may also contribute to the levels of EGFR and PDGFRA amplified populations observed in biopsy data.

摘要

胶质母细胞瘤(GBM)是最具侵袭性的原发性脑肿瘤,目前尚无已知的治愈方法。每个肿瘤都由多个遗传上不同的细胞亚群组成,这些亚群可能对靶向治疗有不同的反应,并可能导致临床试验结果令人失望。图像定位活检技术可在手术期间进行多次活检,并提供信息,确定个体 GBM 中特定亚群发生的区域,从而深入了解其区域遗传变异性。这些亚群也可能以竞争或合作的方式相互作用;确定这些相互作用的性质很重要,因为它们可能对靶向治疗的反应产生影响。我们将活检的遗传信息与相互作用的 GBM 亚群的机制模型相结合,以描述两种常见的 GBM 亚群(EGFR 和 PDGFRA 基因扩增)之间相互作用的性质。我们研究了 25 名患者的图像定位活检数据中发现的群体水平,并将其与竞争、合作和中性相互作用假设下的模型输出进行了比较。我们还探讨了其他影响观察到的模拟亚群的因素,例如选择优势和突变的系统发育顺序,这些因素也可能导致活检数据中观察到的 EGFR 和 PDGFRA 扩增群体的水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2476/8382158/aa7083518a5b/nihms-1720433-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验