Hu Leland S, Ning Shuluo, Eschbacher Jennifer M, Baxter Leslie C, Gaw Nathan, Ranjbar Sara, Plasencia Jonathan, Dueck Amylou C, Peng Sen, Smith Kris A, Nakaji Peter, Karis John P, Quarles C Chad, Wu Teresa, Loftus Joseph C, Jenkins Robert B, Sicotte Hugues, Kollmeyer Thomas M, O'Neill Brian P, Elmquist William, Hoxworth Joseph M, Frakes David, Sarkaria Jann, Swanson Kristin R, Tran Nhan L, Li Jing, Mitchell J Ross
Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.).
Neuro Oncol. 2017 Jan;19(1):128-137. doi: 10.1093/neuonc/now135. Epub 2016 Aug 8.
Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments.
We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV).
We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32).
MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology.
胶质母细胞瘤(GBM)表现出显著的肿瘤内基因异质性。每个肿瘤都由多个具有不同治疗敏感性的基因不同的克隆群体组成。这对靶向治疗和基于基因信息的治疗模式具有重要意义。对比增强(CE)-MRI和传统采样技术未能解决这种异质性,特别是对于非增强肿瘤群体。本研究探讨了使用多参数MRI和纹理分析来表征整个MRI增强和非增强肿瘤节段的区域基因异质性的可行性。
我们从原发性GBM患者的增强区域(ENH)和非增强实质(所谓的肿瘤周围脑,[BAT])收集了多个图像引导活检样本。对于每个活检样本,我们分析了《癌症基因组图谱》报道的GBM核心驱动基因的DNA拷贝数变异。我们将活检位置与MRI和纹理图进行了共同配准,以将区域基因状态与空间匹配的成像测量相关联。我们还为每个GBM驱动基因构建了多变量预测决策树模型,并使用留一法交叉验证(LOOCV)验证了准确性。
我们收集了48个活检样本(13个肿瘤),并确定了6个驱动基因(EGFR、PDGFRA、PTEN、CDKN2A、RB1和TP53)的显著成像相关性(单变量分析)。预测模型的准确性(基于LOOCV)因感兴趣的驱动基因而异。观察到PDGFRA(77.1%)、EGFR(75%)、CDKN2A(87.5%)和RB1(87.5%)的准确性最高,而TP53的准确性最低(37.5%)。4个驱动基因(EGFR、RB1、CDKN2A和PTEN)的模型在BAT样本(n = 16)中显示出比ENH节段样本(n = 32)更高的准确性。
MRI和纹理分析有助于表征区域基因异质性,这在个体化肿瘤学模式下具有潜在的诊断价值。